4 resultados para Papillomaviruses--Vaccination

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium bovis causes animal tuberculosis (TB) in cattle, humans, and other mammalian species, including pigs. The goal of this study was to experimentally assess the responses of pigs with and without a history of tonsillectomy to oral vaccination with heat-inactivated M. bovis and challenge with a virulent M. bovis field strain, to compare pig and wild boar responses using the same vaccination model as previously used in the Eurasian wild boar (Sus scrofa), to evaluate the use of several enzyme-linked immunosorbent assays (ELISAs) and lateral flow tests for in vivo TB diagnosis in pigs, and to verify if these tests are influenced by oral vaccination with inactivated M. bovis. At necropsy, the lesion and culture scores were 20% to 43% higher in the controls than those in the vaccinated pigs. Massive M. bovis growth from thoracic tissue samples was observed in 4 out of 9 controls but in none of the 10 vaccinated pigs. No effect of the presence or absence of tonsils was observed on these scores, suggesting that tonsils are not involved in the protective response to this vaccine in pigs. The serum antibody levels increased significantly only after challenge. At necropsy, the estimated sensitivities of the ELISAs and dual path platform (DPP) assays ranged from 89% to 94%. In the oral mucosa, no differences in gene expression were observed in the control group between the pigs with and without tonsils. In the vaccinated group, the mRNA levels for chemokine (C-C motif) receptor 7 (CCR7), interferon beta (IFN-β), and methylmalonyl coenzyme A mutase (MUT) were higher in pigs with tonsils. Complement component 3 mRNA levels in peripheral blood mononuclear cells (PBMC) increased with vaccination and decreased after M. bovis challenge. This information is relevant for pig production in regions that are endemic for M. bovis and for TB vaccine research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis (TB) remains a pandemic affecting billions of people worldwide, thus stressing the need for new vaccines. Defining the correlates of vaccine protection is essential to achieve this goal. In this study, we used the wild boar model for mycobacterial infection and TB to characterize the protective mechanisms elicited by a new heat inactivated Mycobacterium bovis vaccine (IV). Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special impact on the prevention of pulmonary disease, which is one of the limitations of current vaccines. Oral vaccination with the IV induced an adaptive antibody response and activation of the innate immune response including the complement component C3 and inflammasome. Mycobacterial DNA/RNA was not involved in inflammasome activation but increased C3 production by a still unknown mechanism. The results also suggested a protective mechanism mediated by the activation of IFN-γ producing CD8+ T cells by MHC I antigen presenting dendritic cells (DCs) in response to vaccination with the IV, without a clear role for Th1 CD4+ T cells. These results support a role for DCs in triggering the immune response to the IV through a mechanism similar to the phagocyte response to PAMPs with a central role for C3 in protection against mycobacterial infection. Higher C3 levels may allow increased opsonophagocytosis and effective bacterial clearance, while interfering with CR3-mediated opsonic and nonopsonic phagocytosis of mycobacteria, a process that could be enhanced by specific antibodies against mycobacterial proteins induced by vaccination with the IV. These results suggest that the IV acts through novel mechanisms to protect against TB in wild boar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Field vaccination trials with Mycobacterium bovis BCG, an attenuated mutant of M. bovis, are ongoing in Spain, where the Eurasian wild boar (Sus scrofa) is regarded as the main driver of animal tuberculosis (TB). The oral baiting strategy consists in deploying vaccine baits twice each summer, in order to gain access to a high proportion of wild boar piglets. The aim of this study was to assess the response of wild boar to re-vaccination with BCG and to subsequent challenge with an M. bovis field strain. RESULTS BCG re-vaccinated wild boar showed reductions of 75.8% in lesion score and 66.9% in culture score, as compared to unvaccinated controls. Only one of nine vaccinated wild boar had a culture-confirmed lung infection, as compared to seven of eight controls. Serum antibody levels were highly variable and did not differ significantly between BCG re-vaccinated wild boar and controls. Gamma IFN levels differed significantly between BCG re-vaccinated wild boar and controls. The mRNA levels for IL-1b, C3 and MUT were significantly higher in vaccinated wild boar when compared to controls after vaccination and decreased after mycobacterial challenge. CONCLUSIONS Oral re-vaccination of wild boar with BCG yields a strong protective response against challenge with a field strain. Moreover, re-vaccination of wild boar with BCG is not counterproductive. These findings are relevant given that re-vaccination is likely to happen under real (field) conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ovine enzootic abortion, caused by Chlamydia abortus, leads to important economic losses worldwide. In addition to reproductive failures, infection may impact lamb growth during the first weeks after birth, yet this effect has not been well characterized. Vaccination can help to control the disease but variable efficacy values have been described, possibly related with factors associated with the host, the vaccine, the parameter used for efficacy determination and the challenge conditions. In this context, we evaluated the efficacy of an inactivated standard commercial vaccine and a 1/2 diluted dose in pregnant sheep challenged with C. abortus by examining multiple indicators ofvaccine effect (including incidence of reproductive failures, bacterial excretion, and evolution of weight gain of viable lambs during the first month of life). Three groups of ewes [control non-vaccinated, C (n = 18); vaccinated with standard dose, SV (n = 16) and vaccinated with 1/2 dose, DV (n = 17)], were challenged approximately 90 days post-mating and tested using direct PCR (tissue samples and vaginal swabs) and ELISA (serum) until 31 days post-reproductive outcome. There were not significant differences in the proportions of reproductive failures or bacterial shedding after birth/abortion regardless the vaccination protocol. However, a beneficial effect of vaccination on offspring growth was detected in both vaccinated groups compared with the controls, with a mean increase in weight measured at 30 days of life of 1.5 and 2.5 Kg (p = 0.056) and an increase in the geometric mean of the daily gain of 8.4 and 9.7% in lambs born from DV and SV ewes compared to controls, respectively. Our results demonstrate the effect of an inactivated vaccine in the development of the offspring of C. abortus-infected ewes at a standard and a diluted dose, an interesting finding given the difficulty in achieving sufficient antigen concentration in the production of EAE-commercial vaccines.