2 resultados para Pair 1
em Universidade Complutense de Madrid
Resumo:
We propose and examine an integrable system of nonlinear equations that generalizes the nonlinear Schrodinger equation to 2 + 1 dimensions. This integrable system of equations is a promising starting point to elaborate more accurate models in nonlinear optics and molecular systems within the continuum limit. The Lax pair for the system is derived after applying the singular manifold method. We also present an iterative procedure to construct the solutions from a seed solution. Solutions with one-, two-, and three-lump solitons are thoroughly discussed.
Resumo:
Symmetrization of topologically ordered wave functions is a powerful method for constructing new topological models. Here we study wave functions obtained by symmetrizing quantum double models of a group G in the projected entangled pair states (PEPS) formalism. We show that symmetrization naturally gives rise to a larger symmetry group G˜ which is always non-Abelian. We prove that by symmetrizing on sufficiently large blocks, one can always construct wave functions in the same phase as the double model of G˜. In order to understand the effect of symmetrization on smaller patches, we carry out numerical studies for the toric code model, where we find strong evidence that symmetrizing on individual spins gives rise to a critical model which is at the phase transitions of two inequivalent toric codes, obtained by anyon condensation from the double model of G˜.