3 resultados para PROBABILITY REPRESENTATION

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here it is claimed that it is the semantic relationship between two paired concepts what determines the emergence of different types of neutrality, namely indeterminacy, ambivalence and conflict, widely used under different frameworks (possibly under different names). It will be shown the potential relevance of paired structures, generated from two paired concepts together with their associated neutrality, all of them to be modeled as fuzzy sets. In this way, paired structures can be viewed as a standard basic model from which different models arise. This unifying view should therefore allow a deeper analysis of the relationships between several existing knowledge representation formalisms, providing a basis from which more expressive models can be later developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that quantum correlations for bipartite dichotomic measurements are those of the form (Formula presented.), where the vectors ui and vj are in the unit ball of a real Hilbert space. In this work we study the probability of the nonlocal nature of these correlations as a function of (Formula presented.), where the previous vectors are sampled according to the Haar measure in the unit sphere of (Formula presented.). In particular, we prove the existence of an (Formula presented.) such that if (Formula presented.), (Formula presented.) is nonlocal with probability tending to 1 as (Formula presented.), while for (Formula presented.), (Formula presented.) is local with probability tending to 1 as (Formula presented.).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 10(17) and 10(19) eV and zenith angles up to 65 degrees. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte Carlo results showing how LTP functions from data are in good agreement with simulations.