3 resultados para PREFRONTAL CORTEX

em Universidade Complutense de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the present study was to investigate the effects of the stimulation and inhibition of the ventral part of the medial prefrontal cortex (infralimbic cortex) on basal and stress-induced plasma levels of corticosterone and on the acquisition of aversive memory in animals maintained in control and environmental enrichment (EE) conditions. Intracortical microinjections of the GABAA antagonist picrotoxin and agonist muscimol were performed in male Wistar rats to stimulate and inhibit, respectively, the activity of the infralimbic cortex. Injections were performed 60 min before foot shock stress and training in the inhibitory avoidance task. Picrotoxin injections into the infralimbic cortex increased basal plasma levels of corticosterone. These increases were higher in EE rats which suggest that EE enhances the control exerted by infralimbic cortex over the hypothalamus-pituitary-adrenal (HPA) axis and corticosterone release. Muscimol injections into the infralimbic cortex reduced the stress-induced plasma levels of corticosterone and the retention latency 24 h after training in the inhibitory avoidance performance in control and EE animals, respectively. These results further suggest that the infralimbic cortex is required for the activation of the HPA axis during stress and for the acquisition of contextual aversive memories.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A cross-sectional study was carried out to examine the pattern of changes in the capacity to coordinate attention between two simultaneously performed tasks in a group of 570 volunteers, from 5 to 17 years old. Method: The results revealed that the ability to coordinate attention increases with age, reaching adult values by age 15 years. Also, these results were compared with the performance in the same dual task of healthy elderly and Alzheimer disease (AD) patients found in a previous study. Results: The analysis indicated that AD patients showed a lower dual-tasking capacity than 5-year-old children, whereas the elderly presented a significantly higher ability than 5-year-old children and no significant differences with respect to young adults. Conclusion: These findings may suggest the presence of a working memory system’s mechanism that enables the division of attention, which is strengthened by the maturation of prefrontal cortex, and impaired in AD. (J. of Att. Dis. 2016; 20(2) 87-95)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increased activity of the noradrenergic system in the amygdala has been suggested to contribute to the hyperarousal symptoms associated with post-traumatic stress disorder (PTSD). However, only two studies have examined the content of noradrenaline or its metabolites in the amygdala of rats previously exposed to traumatic stress showing inconsistent results. The aim of this study was to investigate the effects of an inescapable foot shock (IFS) procedure 1) on reactivity to novelty in an open-field (as an index of hyperarousal), and 2) on noradrenaline release in the amygdala during an acute stress. To test the role of noradrenaline in amygdala, we also investigated the effects of microinjections of propranolol, a β-adrenoreceptor antagonist, and clenbuterol, a β-adrenoreceptor agonist, into the amygdala of IFS and control animals. Finally, we evaluated the expression of mRNA levels of β-adrenoreceptors (β1 and β2) in the amygdala, the hippocampus and the prefrontal cortex. Male Wistar rats (3 months) were stereotaxically implanted with bilateral guide cannulae. After recovering from surgery, animals were exposed to IFS (10 shocks, 0.86 mA, and 6 seconds per shock) and seven days later either microdialysis or microinjections were performed in amygdala. Animals exposed to IFS showed a reduced locomotion compared to non-shocked animals during the first 5 minutes in the open-field. In the amygdala, IFS animals showed an enhanced increase of noradrenaline induced by stress compared to control animals. Bilateral microinjections of propranolol (0.5 μg) into the amygdala one hour before testing in the open-field normalized the decreased locomotion observed in IFS animals. On the other hand, bilateral microinjections of clenbuterol (30 ng) into the amygdala of control animals did not change the exploratory activity induced by novelty in the open field. IFS modified the mRNA expression of β1 and β2 adrenoreceptors in the prefrontal cortex and the hippocampus. These results suggest that an increased noradrenergic activity in the amygdala contributes to the expression of hyperarousal in an animal model of PTSD.