6 resultados para PMC detection model
em Universidade Complutense de Madrid
Resumo:
The transducer function mu for contrast perception describes the nonlinear mapping of stimulus contrast onto an internal response. Under a signal detection theory approach, the transducer model of contrast perception states that the internal response elicited by a stimulus of contrast c is a random variable with mean mu(c). Using this approach, we derive the formal relations between the transducer function, the threshold-versus-contrast (TvC) function, and the psychometric functions for contrast detection and discrimination in 2AFC tasks. We show that the mathematical form of the TvC function is determined only by mu, and that the psychometric functions for detection and discrimination have a common mathematical form with common parameters emanating from, and only from, the transducer function mu and the form of the distribution of the internal responses. We discuss the theoretical and practical implications of these relations, which have bearings on the tenability of certain mathematical forms for the psychometric function and on the suitability of empirical approaches to model validation. We also present the results of a comprehensive test of these relations using two alternative forms of the transducer model: a three-parameter version that renders logistic psychometric functions and a five-parameter version using Foley's variant of the Naka-Rushton equation as transducer function. Our results support the validity of the formal relations implied by the general transducer model, and the two versions that were contrasted account for our data equally well.
Resumo:
The standard difference model of two-alternative forced-choice (2AFC) tasks implies that performance should be the same when the target is presented in the first or the second interval. Empirical data often show “interval bias” in that percentage correct differs significantly when the signal is presented in the first or the second interval. We present an extension of the standard difference model that accounts for interval bias by incorporating an indifference zone around the null value of the decision variable. Analytical predictions are derived which reveal how interval bias may occur when data generated by the guessing model are analyzed as prescribed by the standard difference model. Parameter estimation methods and goodness-of-fit testing approaches for the guessing model are also developed and presented. A simulation study is included whose results show that the parameters of the guessing model can be estimated accurately. Finally, the guessing model is tested empirically in a 2AFC detection procedure in which guesses were explicitly recorded. The results support the guessing model and indicate that interval bias is not observed when guesses are separated out.
Resumo:
Proportion correct in two-alternative forcedchoice (2AFC) detection tasks often varies when the stimulus is presented in the first or in the second interval.Reanalysis of published data reveals that these order effects (or interval bias) are strong and prevalent, refuting the standard difference model of signal detection theory. Order effects are commonly regarded as evidence that observers use an off-center criterion under the difference model with bias. We consider an alternative difference model with indecision whereby observers are occasionally undecided and guess with some bias toward one of the response options. Whether or not the data show order effects, the two models fit 2AFC data indistinguishably, but they yield meaningfully different estimates of sensory parameters. Under indeterminacy as to which model governs 2AFC performance, parameter estimates are suspect and potentially misleading. The indeterminacy can be circumvented by modifying the response format so that observers can express indecision when needed. Reanalysis of published data collected in this way lends support to the indecision model. We illustrate alternative approaches to fitting psychometric functions under the indecision model and discuss designs for 2AFC experiments that improve the accuracy of parameter estimates, whether or not order effects are apparent in the data.
Resumo:
Trials in a temporal two-interval forced-choice discrimination experiment consist of two sequential intervals presenting stimuli that differ from one another as to magnitude along some continuum. The observer must report in which interval the stimulus had a larger magnitude. The standard difference model from signal detection theory analyses poses that order of presentation should not affect the results of the comparison, something known as the balance condition (J.-C. Falmagne, 1985, in Elements of Psychophysical Theory). But empirical data prove otherwise and consistently reveal what Fechner (1860/1966, in Elements of Psychophysics) called time-order errors, whereby the magnitude of the stimulus presented in one of the intervals is systematically underestimated relative to the other. Here we discuss sensory factors (temporary desensitization) and procedural glitches (short interstimulus or intertrial intervals and response bias) that might explain the time-order error, and we derive a formal model indicating how these factors make observed performance vary with presentation order despite a single underlying mechanism. Experimental results are also presented illustrating the conventional failure of the balance condition and testing the hypothesis that time-order errors result from contamination by the factors included in the model.
Resumo:
Recent studies have reported that flanking stimuli broaden the psychometric function and lower detection thresholds. In the present study, we measured psychometric functions for detection and discrimination with and without flankers to investigate whether these effects occur throughout the contrast continuum. Our results confirm that lower detection thresholds with flankers are accompanied by broader psychometric functions. Psychometric functions for discrimination reveal that discrimination thresholds with and without flankers are similar across standard levels, and that the broadening of psychometric functions with flankers disappears as standard contrast increases, to the point that psychometric functions at high standard levels are virtually identical with or without flankers. Threshold-versus-contrast (TvC) curves with flankers only differ from TvC curves without flankers in occasional shallower dippers and lower branches on the left of the dipper, but they run virtually superimposed at high standard levels. We discuss differences between our results and other results in the literature, and how they are likely attributed to the differential vulnerability of alternative psychophysical procedures to the effects of presentation order. We show that different models of flanker facilitation can fit the data equally well, which stresses that succeeding at fitting a model does not validate it in any sense.
Resumo:
In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise cutoffs around the spatial frequency of the signal match the shape of the visual channel (symmetric or asymmetric) involved in the detection. In order to test the explanatory power of the model with empirical data, we performed six visual masking experiments. We show that this model, with only two free parameters, fits the empirical masking data with high precision. Finally, we provide equations of the power spectrum model for six masking noises used in the simulations and in the experiments.