3 resultados para One-dimensional model
em Universidade Complutense de Madrid
Resumo:
The Cronbach's alpha is the most widely used method for estimating internal consistency reliability. This procedure has proved very resistant to the passage of time, even if its limitations are well documented and although there are better options as omega coefficient or the different versions of glb, with obvious advantages especially for applied research in which the ítems differ in quality or have skewed distributions. In this paper, using Monte Carlo simulation, the performance of these reliability coefficients under a one-dimensional model is evaluated in terms of skewness and no tau-equivalence. The results show that omega coefficient is always better choice than alpha and in the presence of skew items is preferable to use omega and glb coefficients even in small samples.
Resumo:
We study theoretically the effect of a new type of blocklike positional disorder on the effective electromagnetic properties of one-dimensional chains of resonant, high-permittivity dielectric particles, where particles are arranged into perfectly well-ordered blocks whose relative position is a random variable. This creates a finite order correlation length that mimics the situation encountered in metamaterials fabricated through self-assembled techniques, whose structures often display short-range order between near neighbors but long-range disorder, due to stacking defects. Using a spectral theory approach combined with a principal component statistical analysis, we study, in the long-wavelength regime, the evolution of the electromagnetic response when the composite filling fraction and the block size are changed. Modifications in key features of the resonant response (amplitude, width, etc.) are investigated, showing a regime transition for a filling fraction around 50%.
Resumo:
In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise cutoffs around the spatial frequency of the signal match the shape of the visual channel (symmetric or asymmetric) involved in the detection. In order to test the explanatory power of the model with empirical data, we performed six visual masking experiments. We show that this model, with only two free parameters, fits the empirical masking data with high precision. Finally, we provide equations of the power spectrum model for six masking noises used in the simulations and in the experiments.