2 resultados para Ocean surface winds
em Universidade Complutense de Madrid
Resumo:
Using a coupled model of intermediate complexity the sensitivity of the last glacial maximum (LGM) Atlantic meridional overturning circulation (AMOC) to the strength of surface wind-stress is investigated. A threshold is found below which North Atlantic deep water formation (DWF) takes place south of Greenland and the AMOC is relatively weak. Above this threshold, DWF occurs north of the Greenland-Scotland ridge, leading to a vigorous AMOC. This nonlinear behavior is explained through enhanced salt transport by the wind-driven gyre circulation and the overturning itself. Both pattern and magnitude of the Nordic Sea's temperature difference between strong and weak AMOC states are consistent with those reconstructed for abrupt climate changes of the last glacial period. Our results thus point to a potentially relevant role of surface winds in these phenomena.
Resumo:
A cessation of the Atlantic meridional overturning circulation (AMOC) significantly reduces northward oceanic heat transport. In response to anomalous freshwater flux, this leads to the classic 'bipolar see-saw' pattern of northern cooling and southern warming in surface air and ocean temperatures. By contrast, as shown here in a coupled climate model, both northern and southern cooling are observed for an AMOC reduction in response to reduced wind stress in the Southern Ocean (SO). For very weak SO wind stress, not only the overturning circulation collapses, but sea ice export from the SO is strongly reduced. Consequently, sea ice extent and albedo increase in this region. The resulting cooling overcompensates the warming by the reduced northward heat transport. The effect depends continuously on changes in wind stress and is reversed for increased winds. It may have consequences for abrupt climate change, the last deglaciation and climate sensitivity to increasing atmospheric CO_2 concentration.