2 resultados para ORGANOMERCAPTAN MONOLAYERS
em Universidade Complutense de Madrid
Resumo:
Purpose. To investigate the role of ERK1/2 and RhoA/ROCK intracellular pathways in the modification of corneal re-epithelialization when stimulated by the diadenosine polyphosphates Ap4A and Ap3A. Methods. In wounded confluent SIRC (Statens Seruminstitut rabbit cornea) cell monolayers and in the presence or absence of Ap4A or Ap3A 100 μM, a battery of P2 receptor antagonists and inhibitors of tyrosin kinases, MAPK, and cytoskeleton pathways (AG1478 100 μM, U0126 100 μM, Y27632 100 nM, and (−)-blebbistatin 10 μM; n = 8 each) were assayed. Also, the activation of ERK1/2 and ROCK-I was examined by Western blot assay after treatment with Ap4A and Ap3A (100 μM), with or without suramin, RB-2, U0126, and Y27632. The intracellular distribution of pERK and ROCK-I was examined in the presence of Ap4A or Ap3A (100 μM) with U0126 and Y27632 (100 nM). Results. In the presence of Ap4A, U0126, Y27632, AG1478, and (−)-blebbistatin, reduced the migration rate compared to the effect of Ap4A alone (P < 0.0001, P < 0.001, P < 0.01, and P < 0.1 versus Ap4A, respectively). In the presence of Ap3A 100 μM, U0126 and Y27632 accelerated the migration rate when compared with the effect of Ap3A alone, whereas AG1478 and (−)-blebbistatin (P < 0.0001 versus Ap3A) slowed the migration rate. Western blot assays demonstrated that both dinucleotides activated the ERK1/2 pathway but only Ap4A activated the ROCK-I pathway. The intracellular distribution of pERK1/2 and ROCK-I reflected cross-talk between these two pathways. Conclusions. The activation of the Ap4A/P2Y2 receptor, accelerates corneal epithelial cell migration during wound healing with the activation of MAPK and cytoskeleton pathways, whereas activation of the Ap3A/P2Y6 receptor signals only the MAPK pathway.
Resumo:
Purpose. To investigate the influence of diadenosine polyphosphates on the rate of corneal epithelial cell migration. Methods. Primary corneal epithelial cell cultures were obtained from New Zealand White rabbits. Immunocytochemical experiments were performed by fixing the cells with 4% paraformaldehyde (PFA) and incubated with cytokeratin 3 primary antibody, which was subsequently incubated with a secondary IgG mouse labeled with FITC, and the cells were observed under confocal microscopy. Migration studies were performed by taking confluent monolayers that were wounded with a pipette tip and challenged with different di- and mononucleotides with or without P2 antagonist (n = 8 each treatment). For concentration–response analysis, compounds were tested in doses ranging from 10−8 to 10−3 M (n = 8). The stability of the dinucleotides was assayed by HPLC, with an isocratic method (n = 4). Results. Cells under study were verified as corneal epithelial cells via the immunocytochemical analysis. Cell migration experiments showed that Ap4A, UTP, and ATP accelerated the rate of healing (5, 2.75, and 3 hours, respectively; P < 0.05; P < 0.001), whereas Ap3A, Ap5A, and UDP delayed it (6.5, 10, and 2 hours, respectively; P < 0.05). ADP did not modify the rate of migration. Antagonists demonstrated that Ap4A and Ap3A did activate different P2Y receptors mediating corneal wound-healing acceleration and delay. Concerning the possible degradation of the dinucleotides, it was almost impossible to detect any products resulting from their cleavage. Conclusions. Based on the pharmacological profile of all the compounds tested, the two main P2Y receptors that exist in these corneal cells are a P2Y2 receptor accelerating the rate of healing and a P2Y6 receptor that delays this process.