2 resultados para Multivariable logistic regression

em Universidade Complutense de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study assesses the relation between hypothesized risk factors and African swine fever virus (ASFV) distribution in Sardinia (Italy) after the beginning of the eradication program in 1993, using a Bayesian multivariable logistic regression mixed model. Results indicate that the probability of ASFV occurrence in Sardinia was associated to particular socio-cultural, productive and economical factors found in the region, particularly to large number of confined (i.e., closed) farms (most of them backyard), high road density, high mean altitude, large number of open fattening farms, and large number of pigs per commune. Conversely, large proportion of open farms with at least one census and large proportion of open farms per commune, were found to be protective factors for ASFV. Results suggest that basic preventive and control strategies, such as yearly census or registration of the pigs per farm and better control of the public lands where pigs are usually raised, together with endanced effords of outreach and communication with pig producers should help in the success of the eradication program for ASF in the Island. Methods and results presented here will inform decision making to better control and eradicate ASF in Sardinia and in all those areas with similar management and epidemiological conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Bovine tuberculosis (bTB) is a chronic infectious disease mainly caused by Mycobacterium bovis. Although eradication is a priority for the European authorities, bTB remains active or even increasing in many countries, causing significant economic losses. The integral consideration of epidemiological factors is crucial to more cost-effectively allocate control measures. The aim of this study was to identify the nature and extent of the association between TB distribution and a list of potential risk factors regarding cattle, wild ungulates and environmental aspects in Ciudad Real, a Spanish province with one of the highest TB herd prevalences. RESULTS We used a Bayesian mixed effects multivariable logistic regression model to predict TB occurrence in either domestic or wild mammals per municipality in 2007 by using information from the previous year. The municipal TB distribution and endemicity was clustered in the western part of the region and clearly overlapped with the explanatory variables identified in the final model: (1) incident cattle farms, (2) number of years of veterinary inspection of big game hunting events, (3) prevalence in wild boar, (4) number of sampled cattle, (5) persistent bTB-infected cattle farms, (6) prevalence in red deer, (7) proportion of beef farms, and (8) farms devoted to bullfighting cattle. CONCLUSIONS The combination of these eight variables in the final model highlights the importance of the persistence of the infection in the hosts, surveillance efforts and some cattle management choices in the circulation of M. bovis in the region. The spatial distribution of these variables, together with particular Mediterranean features that favour the wildlife-livestock interface may explain the M. bovis persistence in this region. Sanitary authorities should allocate efforts towards specific areas and epidemiological situations where the wildlife-livestock interface seems to critically hamper the definitive bTB eradication success.