4 resultados para Multi-objective optimization problem

em Universidade Complutense de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macroeconomic policy makers are typically concerned with several indicators of economic performance. We thus propose to tackle the design of macroeconomic policy using Multicriteria Decision Making (MCDM) techniques. More specifically, we employ Multiobjective Programming (MP) to seek so-called efficient policies. The MP approach is combined with a computable general equilibrium (CGE) model. We chose use of a CGE model since they have the dual advantage of being consistent with standard economic theory while allowing one to measure the effect(s) of a specific policy with real data. Applying the proposed methodology to Spain (via the 1995 Social Accounting Matrix) we first quantified the trade-offs between two specific policy objectives: growth and inflation, when designing fiscal policy. We then constructed a frontier of efficient policies involving real growth and inflation. In doing so, we found that policy in 1995 Spain displayed some degree of inefficiency with respect to these two policy objectives. We then offer two sets of policy recommendations that, ostensibly, could have helped Spain at the time. The first deals with efficiency independent of the importance given to both growth and inflation by policy makers (we label this set: general policy recommendations). A second set depends on which policy objective is seen as more important by policy makers: increasing growth or controlling inflation (we label this one: objective-specific recommendations).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since policy-makers usually pursue several conflicting objectives, policy-making can be understood as a multicriteria decision problem. Following the methodological proposal by André and Cardenete (2005) André, F. J. and Cardenete, M. A. 2005. Multicriteria Policy Making. Defining Efficient Policies in a General Equilibrium Model, Seville: Centro de Estudios Andaluces. Working Paper No. E2005/04, multi-objective programming is used in connection with a computable general equilibrium model to represent optimal policy-making and to obtain so-called efficient policies in an application to a regional economy (Andalusia, Spain). This approach is applied to the design of subsidy policies under two different scenarios. In the first scenario, it is assumed that the government is concerned just about two objectives: ensuring the profitability of a key strategic sector and increasing overall output. Finally, the scope of the exercise is enlarged by solving a problem with seven policy objectives, including both general and sectorial objectives. It is concluded that the observed policy could have been Pareto-improved in several directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent technological developments in the field of experimental quantum annealing have made prototypical annealing optimizers with hundreds of qubits commercially available. The experimental demonstration of a quantum speedup for optimization problems has since then become a coveted, albeit elusive goal. Recent studies have shown that the so far inconclusive results, regarding a quantum enhancement, may have been partly due to the benchmark problems used being unsuitable. In particular, these problems had inherently too simple a structure, allowing for both traditional resources and quantum annealers to solve them with no special efforts. The need therefore has arisen for the generation of harder benchmarks which would hopefully possess the discriminative power to separate classical scaling of performance with size from quantum. We introduce here a practical technique for the engineering of extremely hard spin-glass Ising-type problem instances that does not require "cherry picking" from large ensembles of randomly generated instances. We accomplish this by treating the generation of hard optimization problems itself as an optimization problem, for which we offer a heuristic algorithm that solves it. We demonstrate the genuine thermal hardness of our generated instances by examining them thermodynamically and analyzing their energy landscapes, as well as by testing the performance of various state-of-the-art algorithms on them. We argue that a proper characterization of the generated instances offers a practical, efficient way to properly benchmark experimental quantum annealers, as well as any other optimization algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photothermal imaging allows to inspect the structure of composite materials by means of nondestructive tests. The surface of a medium is heated at a number of locations. The resulting temperature field is recorded on the same surface. Thermal waves are strongly damped. Robust schemes are needed to reconstruct the structure of the medium from the decaying time dependent temperature field. The inverse problem is formulated as a weighted optimization problem with a time dependent constraint. The inclusions buried in the medium and their material constants are the design variables. We propose an approximation scheme in two steps. First, Laplace transforms are used to generate an approximate optimization problem with a small number of stationary constraints. Then, we implement a descent strategy alternating topological derivative techniques to reconstruct the geometry of inclusions with gradient methods to identify their material parameters. Numerical simulations assess the effectivity of the technique.