2 resultados para Molecular methods

em Universidade Complutense de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND Herpesvirus can infect a wide range of animal species: mammals, birds, reptiles, fish, amphibians and bivalves. In marine mammals, several alpha- and gammaherpesvirus have been identified in some cetaceans and pinnipeds species. To date, however, this virus has not been detected in any member of the Balaenoptera genus. CASE PRESENTATION Herpesvirus was determined by molecular methods in tissue samples from a male fin whale juvenile (Balaenoptera physalus) and a female common minke whale calf (Balaenoptera acutorostrata) stranded on the Mediterranean coast of the Region of Valencia (Spain). Samples of skin and penile mucosa from the fin whale and samples of skin, muscle and central nervous system tissue from the common minke whale tested positive for herpesvirus based on sequences of the DNA polymerase gene. Sequences from fin whale were identical and belonged to the Alphaherpesvirinae subfamily. Only members of the Gammaherpesvirinae subfamily were amplified from the common minke whale, and sequences from the muscle and central nervous system were identical. Sequences in GenBank most closely related to these novel sequences were viruses isolated from other cetacean species, consistent with previous observations that herpesviruses show similar phylogenetic branching as their hosts. CONCLUSIONS To our knowledge, this is the first molecular determination of herpesvirus in the Balaenoptera genus. It shows that herpesvirus should be included in virological evaluation of these animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isolation of Mycobacterium avium complex (MAC) organisms from clinical samples may occur in patients without clinical disease, making the interpretation of results difficult. The clinical relevance of MAC isolates from different types of clinical samples (n = 47) from 39 patients in different sections of a hospital was assessed by comparison with environmental isolates (n = 17) from the hospital. Various methods for identification and typing (commercial probes, phenotypic characteristics, PCR for detection of IS1245 and IS901, sequencing of the hsp65 gene, and pulsed-field gel electrophoresis) were evaluated. The same strain was found in all the environmental isolates, 21 out of 23 (91.3%) of the isolates cultured from urine samples, and 5 out of 19 (26.3%) isolates from respiratory specimens. This strain did not cause disease in the patients. Testing best characterized the strain as M. avium subsp. hominissuis, with the unusual feature that 81.4% of these isolates lacked the IS1245 element. Contamination of certain clinical samples with an environmental strain was the most likely event; therefore, characterization of the environmental mycobacteria present in health care facilities should be performed to discard false-positive isolations in nonsterile samples, mainly urine samples. Molecular techniques applied in this study demonstrated their usefulness for this purpose.