2 resultados para Microscopy of materials

em Universidade Complutense de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thermal evaporation method developed in the research group enables to grow and design several morphologies of semiconducting oxide nanostructures, such as Ga_2O_3, GeO_2 or Sb_2O_3, among others, and some ternary oxide compounds (ZnGa_2O_4, Zn_2GeO_4). In order to tailor physical properties, a successful doping of these nanostructures is required. However, for nanostructured materials, doping may affect not only their physical properties, but also their morphology during the thermal growth process. In this paper, we will show some examples of how the addition of impurities may result into the formation of complex structures, or changes in the structural phase of the material. In particular, we will consider the addition of Sn and Cr impurities into the precursors used to grow Ga_2O_3, Zn_2GeO_4 and Sb_2O_3 nanowires, nanorods or complex nanostructures, such as crossing wires or hierarchical structures. Structural and optical properties were assessed by electron microscopy (SEM and TEM), confocal microscopy, spatially resolved cathodoluminescence (CL), photoluminescence, and Raman spectroscopies. The growth mechanisms, the luminescence bands and the optical confinement in the obtained oxide nanostructures will be discussed. In particular, some of these nanostructures have been found to be of interest as optical microcavities. These nanomaterials may have applications in optical sensing and energy devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microtubes and rods with nanopipes of transparent conductive oxides (TCO), such as SnO_2, TiO_2, ZnO and In_2O_3, have been fabricated following a vapor-solid method which avoids the use of catalyst or templates. The morphology of the as-grown tubular structures varies as a function of the precursor powder and the parameters employed during the thermal treatments carried out under a controlled argon flow. These materials have been also doped with different elements of technological interest (Cr, Er, Li, Zn, Sn). Energy Dispersive X-ray Spectroscopy (EDS) measurements show that the concentration of the dopants achieved by the vapor-solid method ranges from 0.5 to _3 at.%. Luminescence of the tubes has been analyzed, with special attention paid to the influence of the dopants on their optical properties. In this work, we summarize and discuss some of the processes involved not only in the anisotropic growth of these hollow micro and nanostructures, but also in their doping.