4 resultados para Melusine (Legendary character)
em Universidade Complutense de Madrid
Resumo:
Let G be the fundamental group of the complement of the torus knot of type (m, n). It has a presentation G =
Resumo:
We compute the E-polynomial of the character variety of representations of a rank r free group in SL(3,C). Expanding upon techniques of Logares, Muñoz and Newstead (Rev. Mat. Complut. 26:2 (2013), 635-703), we stratify the space of representations and compute the E-polynomial of each geometrically described stratum using fibrations. Consequently, we also determine the E-polynomial of its smooth, singular, and abelian loci and the corresponding Euler characteristic in each case. Along the way, we give a new proof of results of Cavazos and Lawton (Int. J. Math. 25:6 (2014), 1450058).
Resumo:
We compute the E-polynomials of the moduli spaces of representations of the fundamental group of a once-punctured surface of any genus into SL(2, C), for any possible holonomy around the puncture. We follow the geometric technique introduced in [12], based on stratifying the space of representations, and on the analysis of the behavior of the E-polynomial under fibrations.
Resumo:
We compute the E-polynomials of the moduli spaces of representations of the fundamental group of a complex curve of genus g = 3 into SL(2, C), and also of the moduli space of twisted representations. The case of genus g = 1, 2 has already been done in [12]. We follow the geometric technique introduced in [12], based on stratifying the space of representations, and on the analysis of the behaviour of the E-polynomial under fibrations.