1 resultado para Maximum Principles
em Universidade Complutense de Madrid
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (3)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Applied Math and Science Education Repository - Washington - USA (2)
- Aquatic Commons (22)
- Archive of European Integration (9)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (1)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (13)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Boston University Digital Common (4)
- Brock University, Canada (11)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (7)
- Cambridge University Engineering Department Publications Database (93)
- CentAUR: Central Archive University of Reading - UK (128)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (109)
- Cochin University of Science & Technology (CUSAT), India (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (8)
- Cornell: DigitalCommons@ILR (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (7)
- Diposit Digital de la UB - Universidade de Barcelona (7)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (5)
- Greenwich Academic Literature Archive - UK (6)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (108)
- Infoteca EMBRAPA (4)
- Instituto Politécnico do Porto, Portugal (4)
- Massachusetts Institute of Technology (6)
- Ministerio de Cultura, Spain (5)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (14)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (103)
- Queensland University of Technology - ePrints Archive (142)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositorio Institucional de la Universidad Nacional Agraria (7)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (6)
- Universidad Autónoma de Nuevo León, Mexico (6)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (2)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (15)
- University of Queensland eSpace - Australia (2)
- University of Southampton, United Kingdom (23)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
The aim of this paper is to provide a comprehensive study of some linear non-local diffusion problems in metric measure spaces. These include, for example, open subsets in ℝN, graphs, manifolds, multi-structures and some fractal sets. For this, we study regularity, compactness, positivity and the spectrum of the stationary non-local operator. We then study the solutions of linear evolution non-local diffusion problems, with emphasis on similarities and differences with the standard heat equation in smooth domains. In particular, we prove weak and strong maximum principles and describe the asymptotic behaviour using spectral methods.