3 resultados para Magnetic parameters

em Universidade Complutense de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several works have reported that haematite has non-linear initial susceptibility at room temperature, like pyrrhotite or titanomagnetite, but there is no explanation for the observed behaviours yet. This study sets out to determine which physical property (grain size, foreign cations content and domain walls displacements) controls the initial susceptibility. The performed measurements include microprobe analysis to determine magnetic phases different to haematite; initial susceptibility (300 K); hysteresis loops, SIRM and backfield curves at 77 and 300 K to calculate magnetic parameters and minor loops at 77 K, to analyse initial susceptibility and magnetization behaviours below Morin transition. The magnetic moment study at low temperature is completed with measurements of zero field cooled-field cooled and AC susceptibility in a range from 5 to 300 K. The minor loops show that the non-linearity of initial susceptibility is closely related to Barkhausen jumps. Because of initial magnetic susceptibility is controlled by domain structure it is difficult to establish a mathematical model to separate magnetic subfabrics in haematite-bearing rocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a modelling method to estimate the 3-D geometry and location of homogeneously magnetized sources from magnetic anomaly data. As input information, the procedure needs the parameters defining the magnetization vector (intensity, inclination and declination) and the Earth's magnetic field direction. When these two vectors are expected to be different in direction, we propose to estimate the magnetization direction from the magnetic map. Then, using this information, we apply an inversion approach based on a genetic algorithm which finds the geometry of the sources by seeking the optimum solution from an initial population of models in successive iterations through an evolutionary process. The evolution consists of three genetic operators (selection, crossover and mutation), which act on each generation, and a smoothing operator, which looks for the best fit to the observed data and a solution consisting of plausible compact sources. The method allows the use of non-gridded, non-planar and inaccurate anomaly data and non-regular subsurface partitions. In addition, neither constraints for the depth to the top of the sources nor an initial model are necessary, although previous models can be incorporated into the process. We show the results of a test using two complex synthetic anomalies to demonstrate the efficiency of our inversion method. The application to real data is illustrated with aeromagnetic data of the volcanic island of Gran Canaria (Canary Islands).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. We present a detailed study of the two Sun-like stars KIC 7985370 and KIC 7765135, to determine their activity level, spot distribution, and differential rotation. Both stars were previously discovered by us to be young stars and were observed by the NASA Kepler mission. Methods. The fundamental stellar parameters (vsini, spectral type, T_eff, log g, and [Fe/H]) were derived from optical spectroscopy by comparison with both standard-star and synthetic spectra. The spectra of the targets allowed us to study the chromospheric activity based on the emission in the core of hydrogen Hα and Ca ii infrared triplet (IRT) lines, which was revealed by the subtraction of inactive templates. The high-precision Kepler photometric data spanning over 229 days were then fitted with a robust spot model. Model selection and parameter estimation were performed in a Bayesian manner, using a Markov chain Monte Carlo method. Results. We find that both stars are Sun-like (of G1.5 V spectral type) and have an age of about 100–200 Myr, based on their lithium content and kinematics. Their youth is confirmed by their high level of chromospheric activity, which is comparable to that displayed by the early G-type stars in the Pleiades cluster. The Balmer decrement and flux ratio of their Ca ii-IRT lines suggest that the formation of the core of these lines occurs mainly in optically thick regions that are analogous to solar plages. The spot model applied to the Kepler photometry requires at least seven persistent spots in the case of KIC 7985370 and nine spots in the case of KIC 7765135 to provide a satisfactory fit to the data. The assumption of the longevity of the star spots, whose area is allowed to evolve with time, is at the heart of our spot-modelling approach. On both stars, the surface differential rotation is Sun-like, with the high-latitude spots rotating slower than the low-latitude ones. We found, for both stars, a rather high value of the equator-to-pole differential rotation (dΩ ≈ 0.18 rad d^-1), which disagrees with the predictions of some mean-field models of differential rotation for rapidly rotating stars. Our results agree instead with previous works on solar-type stars and other models that predict a higher latitudinal shear, increasing with equatorial angular velocity, that can vary during the magnetic cycle.