6 resultados para Loop spaces.
em Universidade Complutense de Madrid
Resumo:
We work with Besov spaces Bp,q0,b defined by means of differences, with zero classical smoothness and logarithmic smoothness with exponent b. We characterize Bp,q0,b by means of Fourier-analytical decompositions, wavelets and semi-groups. We also compare those results with the well-known characterizations for classical Besov spaces Bp,qs.
Resumo:
Recently two new types of completeness in metric spaces, called Bourbaki-completeness and cofinal Bourbaki-completeness, have been introduced in [7]. The purpose of this note is to analyze these completeness properties in the general context of uniform spaces. More precisely, we are interested in how they are related with uniform paracompactness properties, as well as with some kind of uniform boundedness.
Resumo:
The class of metric spaces (X,d) known as small-determined spaces, introduced by Garrido and Jaramillo, are properly defined by means of some type of real-valued Lipschitz functions on X. On the other hand, B-simple metric spaces introduced by Hejcman are defined in terms of some kind of bornologies of bounded subsets of X. In this note we present a common framework where both classes of metric spaces can be studied which allows us to see not only the relationships between them but also to obtain new internal characterizations of these metric properties.
Resumo:
In this work we prove the real Nullstellensatz for the ring O(X) of analytic functions on a C-analytic set X ⊂ Rn in terms of the saturation of Łojasiewicz’s radical in O(X): The ideal I(Ƶ(a)) of the zero-set Ƶ(a) of an ideal a of O(X) coincides with the saturation (Formula presented) of Łojasiewicz’s radical (Formula presented). If Ƶ(a) has ‘good properties’ concerning Hilbert’s 17th Problem, then I(Ƶ(a)) = (Formula presented) where (Formula presented) stands for the real radical of a. The same holds if we replace (Formula presented) with the real-analytic radical (Formula presented) of a, which is a natural generalization of the real radical ideal in the C-analytic setting. We revisit the classical results concerning (Hilbert’s) Nullstellensatz in the framework of (complex) Stein spaces. Let a be a saturated ideal of O(Rn) and YRn the germ of the support of the coherent sheaf that extends aORn to a suitable complex open neighborhood of Rn. We study the relationship between a normal primary decomposition of a and the decomposition of YRn as the union of its irreducible components. If a:= p is prime, then I(Ƶ(p)) = p if and only if the (complex) dimension of YRn coincides with the (real) dimension of Ƶ(p).
Resumo:
Ribotoxins are cytotoxic members of the family of fungal extracellular ribonucleases best represented by RNase T1. They share a high degree of sequence identity and a common structural fold, including the geometric arrangement of their active sites. However, ribotoxins are larger,with a well-defined N-terminal β-hairpin, and display longer and positively charged unstructured loops. These structural differences account for their cytotoxic properties.Unexpectedly, the discovery of hirsutellin A (HtA), a ribotoxin produced by the invertebrate pathogen Hirsutella thompsonii, showed how it was possible to accommodate these features into a shorter amino acid sequence. Examination of HtA N-terminal β-hairpin reveals differences in terms of length, charge, and spatial distribution. Consequently,four different HtA mutants were prepared and characterized. One of them was the result of deleting this hairpin [Δ(8-15)] while the other three affected single Lys residues in its close spatial proximity (K115E, K118E, and K123E). The results obtained support the general conclusion that HtA active site would show a high degree of plasticity,being able to accommodate electrostatic and structural changes not suitable for the other previously known larger ribotoxins, as the variants described here only presented small differences in terms of ribonucleolytic activity and cytotoxicity against cultured insect cells.
Resumo:
In the first part of this work, we show how certain techniques from quantum information theory can be used in order to obtain very sharp embeddings between noncommutative Lp-spaces. Then, we use these estimates to study the classical capacity with restricted assisted entanglement of the quantum erasure channel and the quantum depolarizing channel. In particular, we exactly compute the capacity of the first one and we show that certain nonmultiplicative results hold for the second one.