7 resultados para Linear free energy relationship.
em Universidade Complutense de Madrid
Resumo:
We present a tethered Monte Carlo simulation of the crystallization of hard spheres. Our method boosts the traditional umbrella sampling to the point of making practical the study of constrained Gibbs’ free energies depending on several crystalline order parameters. We obtain high-accuracy estimates of the fluid-crystal coexistence pressure for up to 2916 particles (enough to accommodate fluid-solid interfaces). We are able to extrapolate to infinite volume the coexistence pressure [p_(co) = 11.5727(10)k_(B)T/σ^(3)] and the interfacial free energy [γ_({100}) = 0.636(11)k_(B)T/σ^(2)].
Resumo:
We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, but with an extended configuration space (through Creutz-like demons). Canonical averages for arbitrary values of the external magnetic field are computed without additional simulations. The method is put to work in the two-dimensional Ising model, where the existence of exact results enables us to perform high precision checks. A rather peculiar feature of our implementation, which employs a local Metropolis algorithm, is the total absence, within errors, of critical slowing down for magnetic observables. Indeed, high accuracy results are presented for lattices as large as L = 1024.
Resumo:
We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, but with an extended configuration space (through Creutz-like demons). Canonical averages for arbitrary values of the external magnetic field are computed without additional simulations. The method is put to work in the two-dimensional Ising model, where the existence of exact results enables us to perform high precision checks. A rather peculiar feature of our implementation, which employs a local Metropolis algorithm, is the total absence, within errors, of critical slowing down for magnetic observables. Indeed, high accuracy results are presented for lattices as large as L = 1024.
Resumo:
We present the first detailed numerical study in three dimensions of a first-order phase transition that remains first order in the presence of quenched disorder (specifically, the ferromagnetic-paramagnetic transition of the site-diluted four states Potts model). A tricritical point, which lies surprisingly near the pure-system limit and is studied by means of finite-size scaling, separates the first-order and second-order parts of the critical line. This investigation has been made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that plague the standard approach. Entropy, rather than free energy, is the basic object in this approach that exploits a recently introduced microcanonical Monte Carlo method.
Resumo:
We present a detailed numerical study on the effects of adding quenched impurities to a three dimensional system which in the pure case undergoes a strong first order phase transition (specifically, the ferromagnetic/paramagnetic transition of the site-diluted four states Potts model). We can state that the transition remains first-order in the presence of quenched disorder (a small amount of it) but it turns out to be second order as more impurities are added. A tricritical point, which is studied by means of Finite-Size Scaling, separates the first-order and second-order parts of the critical line. The results were made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that arise using the standard methodology. We also made use of a recently proposed microcanonical Monte Carlo method in which entropy, instead of free energy, is the basic quantity.
Resumo:
We introduce a general class of su(1|1) supersymmetric spin chains with long-range interactions which includes as particular cases the su(1|1) Inozemtsev (elliptic) and Haldane-Shastry chains, as well as the XX model. We show that this class of models can be fermionized with the help of the algebraic properties of the su(1|1) permutation operator and take advantage of this fact to analyze their quantum criticality when a chemical potential term is present in the Hamiltonian. We first study the low-energy excitations and the low-temperature behavior of the free energy, which coincides with that of a (1+1)-dimensional conformal field theory (CFT) with central charge c=1 when the chemical potential lies in the critical interval (0,E(π)), E(p) being the dispersion relation. We also analyze the von Neumann and Rényi ground state entanglement entropies, showing that they exhibit the logarithmic scaling with the size of the block of spins characteristic of a one-boson (1+1)-dimensional CFT. Our results thus show that the models under study are quantum critical when the chemical potential belongs to the critical interval, with central charge c=1. From the analysis of the fermion density at zero temperature, we also conclude that there is a quantum phase transition at both ends of the critical interval. This is further confirmed by the behavior of the fermion density at finite temperature, which is studied analytically (at low temperature), as well as numerically for the su(1|1) elliptic chain.
Resumo:
Three Enterococcus faecium strains isolated successively from the same patient, vancomycin-resistant strain BM4659, vancomycin-dependent strain BM4660, and vancomycin-revertant strain BM4661, were indistinguishable by pulsed-field gel electrophoresis and harbored plasmid pIP846, which confers VanB-type resistance. The vancomycin dependence of strain BM4660 was due to mutation P(175)L, which suppressed the activity of the host Ddl D-Ala:D-Ala ligase. Reversion to resistance in strain BM4661 was due to a G-to-C transversion in the transcription terminator of the vanRS(B) operon that lowered the free energy of pairing from -13.08 to -6.65 kcal/mol, leading to low-level constitutive expression of the resistance genes from the P(RB) promoter, as indicated by analysis of peptidoglycan precursors and of VanX(B) D,D-dipeptidase activity. Transcription of the resistance genes, studied by Northern hybridization and reverse transcription, initiated from the P(YB) resistance promoter, was inducible in strains BM4659 and BM4660, whereas it started from the P(RB) regulatory promoter in strain BM4661, where it was superinducible. Strain BM4661 provides the first example of reversion to vancomycin resistance of a VanB-type dependent strain not due to a compensatory mutation in the ddl or vanS(B) gene. Instead, a mutation in the transcription terminator of the regulatory genes resulted in transcriptional readthrough of the resistance genes from the P(RB) promoter in the absence of vancomycin.