3 resultados para Laplace eigenfunctions

em Universidade Complutense de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we examine the time T to reach a critical number K0 of infections during an outbreak in an epidemic model with infective and susceptible immigrants. The underlying process X, which was first introduced by Ridler-Rowe (1967), is related to recurrent diseases and it appears to be analytically intractable. We present an approximating model inspired from the use of extreme values, and we derive formulae for the Laplace-Stieltjes transform of T and its moments, which are evaluated by using an iterative procedure. Numerical examples are presented to illustrate the effects of the contact and removal rates on the expected values of T and the threshold K0, when the initial time instant corresponds to an invasion time. We also study the exact reproduction number Rexact,0 and the population transmission number Rp, which are random versions of the basic reproduction number R0.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with a stochastic epidemic model for computer viruses with latent and quarantine periods, and two sources of infection: internal and external. All sojourn times are considered random variables which are assumed to be independent and exponentially distributed. For this model extinction and hazard times are analyzed, giving results for their Laplace transforms and moments. The transient behavior is considered by studying the number of times that computers are susceptible, exposed, infectious and quarantined during a period of time (0, t] and results for their joint and marginal distributions, moments and cross moments are presented. In order to give light this analysis, some numerical examples are showed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photothermal imaging allows to inspect the structure of composite materials by means of nondestructive tests. The surface of a medium is heated at a number of locations. The resulting temperature field is recorded on the same surface. Thermal waves are strongly damped. Robust schemes are needed to reconstruct the structure of the medium from the decaying time dependent temperature field. The inverse problem is formulated as a weighted optimization problem with a time dependent constraint. The inclusions buried in the medium and their material constants are the design variables. We propose an approximation scheme in two steps. First, Laplace transforms are used to generate an approximate optimization problem with a small number of stationary constraints. Then, we implement a descent strategy alternating topological derivative techniques to reconstruct the geometry of inclusions with gradient methods to identify their material parameters. Numerical simulations assess the effectivity of the technique.