1 resultado para LIE GROUPS
em Universidade Complutense de Madrid
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (12)
- Archive of European Integration (8)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (48)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (3)
- Boston University Digital Common (3)
- Brock University, Canada (9)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (39)
- CentAUR: Central Archive University of Reading - UK (50)
- Center for Jewish History Digital Collections (238)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (89)
- Cochin University of Science & Technology (CUSAT), India (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Cornell: DigitalCommons@ILR (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (31)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (11)
- Indian Institute of Science - Bangalore - Índia (64)
- Instituto Politécnico do Porto, Portugal (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Ministerio de Cultura, Spain (5)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (12)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (117)
- Queensland University of Technology - ePrints Archive (103)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (8)
- Research Open Access Repository of the University of East London. (2)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- School of Medicine, Washington University, United States (2)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad del Rosario, Colombia (5)
- Universidade Complutense de Madrid (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (3)
- Université de Montréal (1)
- Université de Montréal, Canada (58)
- University of Queensland eSpace - Australia (3)
- University of Southampton, United Kingdom (7)
- WestminsterResearch - UK (2)
Resumo:
We investigate some topological properties, in particular formality, of compact Sasakian manifolds. Answering some questions raised by Boyer and Galicki, we prove that all higher (than three) Massey products on any compact Sasakian manifold vanish. Hence, higher Massey products do obstruct Sasakian structures. Using this, we produce a method of constructing simply connected K-contact non-Sasakian manifolds. On the other hand, for every n > 3, we exhibit the first examples of simply connected compact Sasakian manifolds of dimension 2n + 1 that are non-formal. They are non-formal because they have a non-zero triple Massey product. We also prove that arithmetic lattices in some simple Lie groups cannot be the fundamental group of a compact Sasakian manifold.