2 resultados para Ketene Valence Isomers

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isomerism is ubiquitous in chemistry, physics, and biology. In atomic and molecular physics, in particular, isomer effects are well known in electron-impact phenomena; however, very little is known for positron collisions. Here we report on a set of experimental and theoretical cross sections for low-energy positron scattering from the three structural isomers of pentane: normal-pentane, isopentane, and neopentane. Total cross sections for positron scattering from normal-pentane and isopentane were measured at the University of Trento at incident energies between 0.1 and 50 eV. Calculations of the total cross sections, integral cross sections for elastic scattering, positronium formation, and electronic excitations plus direct ionization, as well as elastic differential cross sections were computed for all three isomers between 1 and 1000 eV using the independent atom model with screening corrected additivity rule. No definitive evidence of a significant isomer effect in positron scattering from the pentane isomers appears to be present. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gamma-ray decay of excited states of the one-valence-proton nucleus Sb-133 has been studied using cold-neutron induced fission of U-235 and Pu-241 targets, during the EXILL campaign at the ILL reactor in Grenoble. By using a highly efficient HPGe array, coincidences between gamma-rays prompt with the fission event and those delayed up to several tens of microseconds were investigated, allowing to observe, for the first time, high-spin excited states above the 16.6 mu s isomer. Lifetimes analysis, performed by fast-timing techniques with LaBr3(Ce) scintillators, revealed a difference of almost two orders of magnitude in B(M1) strength for transitions between positive-parity medium-spin yrast states. The data are interpreted by a newly developed microscopic model which takes into account couplings between core excitations (both collective and non-collective) of the doubly magic nucleus Sn-132 and the valence proton, using Skyrme effective interaction in a consistent way. The results point to a fast change in the nature of particle-core excitations with increasing spin. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.