2 resultados para Isolate
em Universidade Complutense de Madrid
Resumo:
The 16S rRNA methyltransferase ArmA is a worldwide emerging determinant that confers high-level resistance to most clinically relevant aminoglycosides. We report here the identification and characterization of a multidrug-resistant Salmonella enterica subspecies I.4,12:i:- isolate recovered from chicken meat sampled in a supermarket on February 2009 in La Reunion, a French island in the Indian Ocean. Susceptibility testing showed an unusually high-level resistance to gentamicin, as well as to ampicillin, expanded-spectrum cephalosporins and amoxicillin-clavulanate. Molecular analysis of the 16S rRNA methyltransferases revealed presence of the armA gene, together with bla(TEM-1), bla(CMY-2), and bla(CTX-M-3). All of these genes could be transferred en bloc through conjugation into Escherichia coli at a frequency of 10(-5) CFU/donor. Replicon typing and S1 pulsed-field gel electrophoresis revealed that the armA gene was borne on an ~150-kb broad-host-range IncP plasmid, pB1010. To elucidate how armA had integrated in pB1010, a PCR mapping strategy was developed for Tn1548, the genetic platform for armA. The gene was embedded in a Tn1548-like structure, albeit with a deletion of the macrolide resistance genes, and an IS26 was inserted within the mel gene. To our knowledge, this is the first report of ArmA methyltransferase in food, showing a novel route of transmission for this resistance determinant. Further surveillance in food-borne bacteria will be crucial to determine the role of food in the spread of 16S rRNA methyltransferase genes worldwide.
Resumo:
Three Enterococcus faecium strains isolated successively from the same patient, vancomycin-resistant strain BM4659, vancomycin-dependent strain BM4660, and vancomycin-revertant strain BM4661, were indistinguishable by pulsed-field gel electrophoresis and harbored plasmid pIP846, which confers VanB-type resistance. The vancomycin dependence of strain BM4660 was due to mutation P(175)L, which suppressed the activity of the host Ddl D-Ala:D-Ala ligase. Reversion to resistance in strain BM4661 was due to a G-to-C transversion in the transcription terminator of the vanRS(B) operon that lowered the free energy of pairing from -13.08 to -6.65 kcal/mol, leading to low-level constitutive expression of the resistance genes from the P(RB) promoter, as indicated by analysis of peptidoglycan precursors and of VanX(B) D,D-dipeptidase activity. Transcription of the resistance genes, studied by Northern hybridization and reverse transcription, initiated from the P(YB) resistance promoter, was inducible in strains BM4659 and BM4660, whereas it started from the P(RB) regulatory promoter in strain BM4661, where it was superinducible. Strain BM4661 provides the first example of reversion to vancomycin resistance of a VanB-type dependent strain not due to a compensatory mutation in the ddl or vanS(B) gene. Instead, a mutation in the transcription terminator of the regulatory genes resulted in transcriptional readthrough of the resistance genes from the P(RB) promoter in the absence of vancomycin.