2 resultados para Intrinsic doping
em Universidade Complutense de Madrid
Resumo:
El deseo de lograr la victoria con el menor esfuerzo o la garantía de la derrota segura del rival, es un sentimiento tan antiguo como la historia del deporte, para conseguirlo a lo largo del tiempo los métodos, las formas, las sustancias para alterar el rendimiento físico han evolucionado, aunque la intención se mantiene de forma invariable. En nuestros días el doping está presente en la mayoría de los deportes y las carreras de caballos no son una excepción. Por esta razón con el fin de salvaguardar el bienestar animal, la limpieza del deporte y la protección del juego en los hipódromos españoles se realiza “el control del doping”, se practica a los caballos PSI de carreras, hasta ahora, siguiendo las directrices del “Código de la Sociedad Fomento de la Cría Caballar en España” (SFCCE), de esta forma tratamos de impedir el uso fraudulento de sustancias dopantes o el abuso de las sustancias medicamentosas. El control del doping en los hipódromos españoles empezó en 1960, gracias a un acuerdo entre la SFCCE y la Cátedra de Farmacología y Toxicología de la Facultad de Veterinaria de la Universidad Complutense, de lo sucedido en estos primeros años incluimos en nuestro trabajo un estudio crítico. En 1983 la SFCCE se modernizó y delegó la responsabilidad de los análisis de orina y sangre a un laboratorio homologado por la International Federation of Horseracing Authorities (IFHA). Por esta razón, en nuestro trabajo aportamos los datos correspondientes al control del doping de los caballos de carreras en España desde 1983 y hasta diciembre de 2014...
Resumo:
We have deposited intrinsic amorphous silicon (a-Si:H) using the electron cyclotron resonance (ECR) chemical vapor deposition technique in order to analyze the a-Si:H/c-Si heterointerface and assess the possible application in heterojunction with intrinsic thin layer (HIT) solar cells. Physical characterization of the deposited films shows that the hydrogen content is in the 15-30% range, depending on deposition temperature. The optical bandgap value is always comprised within the range 1.9- 2.2 eV. Minority carrier lifetime measurements performed on the heterostructures reach high values up to 1.3 ms, indicating a well-passivated a-Si:H/c-Si heterointerface for deposition temperatures as low as 100°C. In addition, we prove that the metal-oxide- semiconductor conductance method to obtain interface trap distribution can be applied to the a-Si:H/c-Si heterointerface, since the intrinsic a-Si:H layer behaves as an insulator at low or negative bias. Values for the minimum of D_it as low as 8 × 10^10 cm^2 · eV^-1 were obtained for our samples, pointing to good surface passivation properties of ECR-deposited a-Si:H for HIT solar cell applications.