2 resultados para Interfacial tension

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sticholysin II (StnII) is a pore-forming toxin that uses sphingomyelin (SM) as the recognition molecule in targeting membranes.After StnII monomers bind to SM, several toxin monomers act in concert to oligomerize into a functional pore. The regulation of StnII binding to SM, and the subsequent pore-formation process, is not fully understood. In this study, we examined how the biophysical properties of bilayers, originating from variations in the SM structure, from the presence of sterol species, or from the presence of increasingly polyunsaturated glycerophospholipids,affected StnII-induced pore formation. StnII-induced pore formation, as determined from calcein permeabilization, was fastest in the pure unsaturated SM bilayers. In 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/saturated SM bilayers (4:1 molar ratio), pore formation became slower as the chain length of the saturated SMs increased from 14 up to 24 carbons. In the POPC/palmitoyl-SM (16:0-SM) 4:1 bilayers, SM could not support pore formation by StnII if dimyristoyl-PC was included at 1:1 stoichiometry with 16:0-SM, suggesting that free clusters of SM were required for toxin binding and/or pore formation. Cholesterol and other sterols facilitated StnII-induced pore formation markedly, but the efficiency did not appear to correlate with the sterol structure. Benzyl alcohol was more efficient than sterols in enhancing the pore-formation process, suggesting that the effect on pore formation originated from alcohol-induced alteration of the hydrogen-bonding network in the SM-containing bilayers. Finally, we observed that pore formation by StnII was enhanced in the PC/16:0-SM 4:1 bilayers, in which the PC was increasingly unsaturated. We conclude that the physical state of bilayer lipids greatly affected pore formation by StnII. Phase boundaries were not required for pore formation, although SM in a gel state attenuated pore formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Memristive switching serves as the basis for a new generation of electronic devices. Memristors are two-terminal devices in which the current is turned on and off by redistributing point defects, e.g., vacancies, which is difficult to control. Memristors based on alternative mechanisms have been explored, but achieving both the high On/Off ratio and the low switching energy desirable for use in electronics remains a challenge. Here we report memristive switching in a La_(0.7)Ca_(0.3)MnO_(3)/PrBa_(2)Cu_(3)O_(7) bilayer with an On/Off ratio greater than 103 and demonstrate that the phenomenon originates from a new type of interfacial magnetoelectricity. Using results from firstprinciples calculations, we show that an external electric-field induces subtle displacements of the interfacial Mn ions, which switches on/off an interfacial magnetic “dead” layer, resulting in memristive behavior for spin-polarized electron transport across the bilayer. The interfacial nature of the switching entails low energy cost about of a tenth of atto Joule for write/erase a “bit”. Our results indicate new opportunities for manganite/cuprate systems and other transition-metal-oxide junctions in memristive applications.