2 resultados para IR spectroscopy

em Universidade Complutense de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultraviolet (UV) nonionizing continuum and mid-infrared (IR) emission constitute the basis of two widely used star formation (SF) indicators at intermediate and high redshifts. We study 2430 galaxies with z < 1.4 in the Extended Groth Strip with deep MIPS 24 μm observations from FIDEL, spectroscopy from DEEP2, and UV, optical, and near-IR photometry from the AEGIS. The data are coupled with dust-reddened stellar population models and Bayesian spectral energy distribution (SED) fitting to estimate dust-corrected star formation rates (SFRs). In order to probe the dust heating from stellar populations of various ages, the derived SFRs were averaged over various timescales—from 100 Myr for "current" SFR (corresponding to young stars) to 1-3 Gyr for long-timescale SFRs (corresponding to the light-weighted age of the dominant stellar populations). These SED-based UV/optical SFRs are compared to total IR luminosities extrapolated from 24 μm observations, corresponding to 10-18 μm rest frame. The total IR luminosities are in the range of normal star-forming galaxies and luminous IR galaxies (10^10-10^12 L_☉). We show that the IR luminosity can be estimated from the UV and optical photometry to within a factor of 2, implying that most z < 1.4 galaxies are not optically thick. We find that for the blue, actively star-forming galaxies the correlation between the IR luminosity and the UV/optical SFR shows a decrease in scatter when going from shorter to longer SFR-averaging timescales. We interpret this as the greater role of intermediate age stellar populations in heating the dust than what is typically assumed. Equivalently, we observe that the IR luminosity is better correlated with dust-corrected optical luminosity than with dust-corrected UV light. We find that this holds over the entire redshift range. Many so-called green valley galaxies are simply dust-obscured actively star-forming galaxies. However, there exist 24 μm detected galaxies, some with L_IR>10^11 L_☉, yet with little current SF. For them a reasonable amount of dust absorption of stellar light (but presumably higher than in nearby early-type galaxies) is sufficient to produce the observed levels of IR, which includes a large contribution from intermediate and old stellar populations. In our sample, which contains very few ultraluminous IR galaxies, optical and X-ray active galactic nuclei do not contribute on average more than ~50% to the mid-IR luminosity, and we see no evidence for a large population of "IR excess" galaxies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present Spitzer IRS mid-infrared spectra for 15 gravitationally lensed, 24 μm-selected galaxies, and combine the results with four additional very faint galaxies with IRS spectra in the literature. The median intrinsic 24 μm flux density of the sample is 130 μJy, enabling a systematic survey of the spectral properties of the very faint 24 μm sources that dominate the number counts of Spitzer cosmological surveys. Six of the 19 galaxy spectra (32%) show the strong mid-IR continuua expected of AGNs; X-ray detections confirm the presence of AGNs in three of these cases, and reveal AGNs in two other galaxies. These results suggest that nuclear accretion may contribute more flux to faint 24 μm-selected samples than previously assumed. Almost all the spectra show some aromatic (PAH) emission features; the measured aromatic flux ratios do not show evolution from z = 0. In particular, the high signal-to-noise mid-IR spectrum of SMM J163554.2+661225 agrees remarkably well with low-redshift, lower luminosity templates. We compare the rest-frame 8 μm and total infrared luminosities of star-forming galaxies, and find that the behavior of this ratio with total IR luminosity has evolved modestly from z = 2 to z = 0. Since the high aromatic-to-continuum flux ratios in these galaxies rule out a dominant contribution by AGNs, this finding implies systematic evolution in the structure and/or metallicity of infrared sources with redshift. It also has implications for the estimates of star-forming rates inferred from 24 μm measurements, in the sense that at z ~ 2, a given observed frame 24 μm luminosity corresponds to a lower bolometric luminosity than would be inferred from low-redshift templates of similar luminosity at the corresponding rest wavelength.