2 resultados para Hydrophobic and Hydrophilic Interactions
em Universidade Complutense de Madrid
Resumo:
The agricultural and energy industries are closely related, both biologically and financially. The paper discusses the relationship and the interactions on price and volatility, with special focus on the covolatility spillover effects for these two industries. The interaction and covolatility spillovers or the delayed effect of a returns shock in one asset on the subsequent volatility or covolatility in another asset, between the energy and agricultural industries is the primary emphasis of the paper. Although there has already been significant research on biofuel and biofuel-related crops, much of the previous research has sought to find a relationship among commodity prices. Only a few published papers have been concerned with volatility spillovers. However, it must be emphasized that there have been numerous technical errors in the theoretical and empirical research, which needs to be corrected. The paper not only considers futures prices as a widely-used hedging instrument, but also takes an interesting new hedging instrument, ETF, into account. ETF is regarded as index futures when investors manage their portfolios, so it is possible to calculate an optimal dynamic hedging ratio. This is a very useful and interesting application for the estimation and testing of volatility spillovers. In the empirical analysis, multivariate conditional volatility diagonal BEKK models are estimated for comparing patterns of covolatility spillovers. The paper provides a new way of analyzing and describing the patterns of covolatility spillovers, which should be useful for the future empirical analysis of estimating and testing covolatility spillover effects.
Resumo:
The optimal capacities and locations of a sequence of landfills are studied, and the interactions between these characteristics are considered. Deciding the capacity of a landfill has some spatial implications since it affects the feasible region for the remaining landfills, and some temporal implications because the capacity determines the lifetime of the landfill and hence the moment of time when the next landfills should be constructed. Some general mathematical properties of the solution are provided and interpreted from an economic point of view. The resulting problem turns out to be non-convex and, therefore, it cannot be solved by conventional optimization techniques. Some global optimization methods are used to solve the problem in a particular case in order to illustrate how the solution depends on the parameter values.