2 resultados para Hybrid clustering algorithm
em Universidade Complutense de Madrid
Resumo:
One of the main challenges of fuzzy community detection problems is to be able to measure the quality of a fuzzy partition. In this paper, we present an alternative way of measuring the quality of a fuzzy community detection output based on n-dimensional grouping and overlap functions. Moreover, the proposed modularity measure generalizes the classical Girvan–Newman (GN) modularity for crisp community detection problems and also for crisp overlapping community detection problems. Therefore, it can be used to compare partitions of different nature (i.e. those composed of classical, overlapping and fuzzy communities). Particularly, as is usually done with the GN modularity, the proposed measure may be used to identify the optimal number of communities to be obtained by any network clustering algorithm in a given network. We illustrate this usage by adapting in this way a well-known algorithm for fuzzy community detection problems, extending it to also deal with overlapping community detection problems and produce a ranking of the overlapping nodes. Some computational experiments show the feasibility of the proposed approach to modularity measures through n-dimensional overlap and grouping functions.
Resumo:
The Hybrid Monte Carlo algorithm is adapted to the simulation of a system of classical degrees of freedom coupled to non self-interacting lattices fermions. The diagonalization of the Hamiltonian matrix is avoided by introducing a path-integral formulation of the problem, in d + 1 Euclidean space–time. A perfect action formulation allows to work on the continuum Euclidean time, without need for a Trotter–Suzuki extrapolation. To demonstrate the feasibility of the method we study the Double Exchange Model in three dimensions. The complexity of the algorithm grows only as the system volume, allowing to simulate in lattices as large as 163 on a personal computer. We conclude that the second order paramagnetic–ferromagnetic phase transition of Double Exchange Materials close to half-filling belongs to the Universality Class of the three-dimensional classical Heisenberg model.