2 resultados para Human Tumor-antigens
em Universidade Complutense de Madrid
Resumo:
The Major Histocompatibility Complex (MHC) comprises the most polymorphic loci in animals. MHC plays an important role during the first steps of the immune response in vertebrates. In humans, MHC molecules (also named human leukocyte antigens, HLA) were initially regarded as class I or class II molecules. Each of them, presents to different T cells subsets. MHC class I molecules, are heterodimers in which the heavy chain (alpha) has three extracellular domains, two of which (alpha 1 and alpha 2) are polymorphic and conform the antigen recognition sites (ARS). The ARS is thought to be subjected to balancing selection for variability, which is the cause of the very high polymorphism of the MHC molecules. Different pathogenic epitopes would be the evolutionary force causing balancing selection. MHC class I genes have been completely sequenced (α1 and α2 protein domains) and thoroughly studied in Gallus gallus (chicken) as well as in mammals. In fact, the MHC locus was first defined in chicken, specifically in the highly consanguineous variety „Leghorn‟. It has been found that, in the case of chickens the MHC genetic region is considerably smaller than it is in mammals (remarkably shorter introns were found in chickens), and is organized quite differently. The noteworthy presence of short introns in chickens; supported the hypothesis that chicken‟s MHC represented a „minimal essential MHC‟. Until now, it has been assumed that chicken (order Galliformes) MHC was similar to all species included in the whole class Aves...
Resumo:
Tagging of RNases, such as the ribotoxin α-sarcin, with the variable domains of antibodies directed to surface antigens that are selectively expressed on tumor cells endows cellular specificity to their cytotoxic action. A recombinant single-chain immunotoxin based on the ribotoxin α-sarcin (IMTXA33αS), produced in the generally regarded as safe (GRAS) yeast Pichia pastoris, has been recently described as a promising candidate for the treatment of colorectal cancer cells expressing the glycoprotein A33 (GPA33) antigen, due to its high specific and effective cytotoxic effect on in vitro assays against targeted cells. Here we report the in vivo antitumor effectiveness of this immunotoxin on nude mice bearing GPA33-positive human colon cancer xenografts. Two sets of independent assays were performed, including three experimental groups: control (PBS) and treatment with two different doses of immunotoxin (50 or 100 μg/ injection) (n = 8). Intraperitoneal administration of IMTXA33αS resulted in significant dose-dependent tumor growth inhibition. In addition, the remaining tumors excised from immunotoxin-treated mice showed absence of the GPA33 antigen and a clear inhibition of angiogenesis and proliferative capacity. No signs of immunotoxin-induced pathological changes were observed from specimens tissues.Overall these results show efficient and selective cytotoxic action on tumor xenografts, combined with the lack of severe side effects, suggesting that IMTXA33αS is a potential therapeutic agent against colorectal cancer.