2 resultados para Her2

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinically HER2+ (cHER2+) breast cancer (BC), as exclusively determined by immunohistochemistry of HER2 protein overexpression and/or fluorescence in situ hybridization of HER2 gene amplification, has been largely considered a single disease entity in terms of clinical outcome and in the susceptibility to the anti-HER2 monoclonal antibody trastuzumab (Herceptin). However, although the adjuvant/neoadjuvant use of the trastuzumab has been shown to significantly reduce recurrence risk when added to standard chemotherapy in women with early-stage cHER2+ BC, not all cases derive similar benefit from trastuzumab because a significant number of cHER2+ BC patients develop disease recurrence. Unfortunately, the identification of a robust clinical predictor of trastuzumab benefit, including HER2 itself, has proven challenging in the adjuvant/neoadjuvant setting. Thus, we suggest that a new generation of research needs to refine the prognostic taxonomy of cHER2+ BC and develop easy-to-use, clinicbased prediction algorithms to distinguish between good- and poor- responders to trastuzumab-based therapy ab initio. This study offered two hypotheses: 1.) HER2 overexpression can unexpectedly take place in a molecular background owned by basal-like BC (a commonly HER2-negative BC subtype which possesses many epithelial-mesenchymal transition (EMT) characteristics and exhibits robust cancer stem cell [CSC]-like features), thus generating a so-called basal/cHER2+ BC subtype; 2.) the basal/cHER2+ phenotype confers poor prognosis and delineates a subgroup of intrinsically aggressive cHER2+ BC with primary resistance to trastuzumab...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin–ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids. Various mutations were tested individually within each epitope and then in combination to isolate deimmunised α-sarcin variants that had the desired properties of silencing T cell epitopes and retention of the ability to inhibit protein synthesis (equivalent to wild-type, WT α-sarcin). A deimmunised variant (D9T/Q142T) demonstrated a complete lack of T cell activation in in vitro whole protein human T cell assays using peripheral blood mononuclear cells from donors with diverse HLA allotypes. Generation of an immunotoxin by fusion of the D9T/Q142T variant to a single-chain Fv targeting Her2 demonstrated potent cell killing equivalent to a fusion protein comprising the WT α-sarcin. These results represent the first fungal ribotoxin to be deimmunised with the potential to construct a new generation of deimmunised immunotoxin therapeutics.