3 resultados para HOLLOW SPHERES

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a tethered Monte Carlo simulation of the crystallization of hard spheres. Our method boosts the traditional umbrella sampling to the point of making practical the study of constrained Gibbs’ free energies depending on several crystalline order parameters. We obtain high-accuracy estimates of the fluid-crystal coexistence pressure for up to 2916 particles (enough to accommodate fluid-solid interfaces). We are able to extrapolate to infinite volume the coexistence pressure [p_(co) = 11.5727(10)k_(B)T/σ^(3)] and the interfacial free energy [γ_({100}) = 0.636(11)k_(B)T/σ^(2)].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase diagram of soft spheres with size dispersion is studied by means of an optimized Monte Carlo algorithm which allows us to equilibrate below the kinetic glass transition for all size distributions. The system ubiquitously undergoes a first-order freezing transition. While for a small size dispersion the frozen phase has a crystalline structure, large density inhomogeneities appear in the highly disperse systems. Studying the interplay between the equilibrium phase diagram and the kinetic glass transition, we argue that the experimentally found terminal polydispersity of colloids is a purely kinetic phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hollow, cylindrical, prismatic light guides (CPLGs) are optical components that, using total internal reflection (TIR), are able to transmit high-diameter light beams in daylight and artificial lighting applications without relevant losses. It is necessary to study the prism defects of their surfaces to quantify the behavior of these optical components. In this Letter, we analyze a CPLG made of a transparent dielectric material. Scanning electron microscopy (SEM) and the topographic optical profilometry by absorption in fluids (TOPAF) imaging technique are conducted to determine if there are defects in the corners of the prisms. A model for light guide transmittance that is dependent on prism defects is proposed. Finally, a simulation and an experimental study are carried out to check the validity of the proposed model.