2 resultados para Good laboratory practices
em Universidade Complutense de Madrid
Resumo:
We analyzed six apiaries in several natural environments with a Mediterranean ecosystem in Madrid, central Spain, in order to understand how landscape and management characteristics may influence apiary health and bee production in the long term. We focused on five criteria (habitat quality, landscape heterogeneity, climate, management and health), as well as 30 subcriteria, and we used the analytic hierarchy process (AHP) to rank them according to relevance. Habitat quality proved to have the highest relevance, followed by beehive management. Within habitat quality, the following subcriteria proved to be most relevant: orographic diversity, elevation range and important plant species located 1.5 km from the apiary. The most important subcriteria under beehive management were honey production, movement of the apiary to a location with a higher altitude and wax renewal. Temperature was the most important subcriterion under climate, while pathogen and Varroa loads were the most significant under health. Two of the six apiaries showed the best values in the AHP analysis and showed annual honey production of 70 and 28 kg/colony. This high productivity was due primarily to high elevation range and high orographic diversity, which favored high habitat quality. In addition, one of these apiaries showed the best value for beehive management, while the other showed the best value for health, reflected in the low pathogen load and low average number of viruses. These results highlight the importance of environmental factors and good sanitary practices to maximize apiary health and honey productivity.
Resumo:
Advances in the diagnosis of Mycobacterium bovis infection in wildlife hosts may benefit the development of sustainable approaches to the management of bovine tuberculosis in cattle. In the present study, three laboratories from two different countries participated in a validation trial to evaluate the reliability and reproducibility of a real time PCR assay in the detection and quantification of M. bovis from environmental samples. The sample panels consisted of negative badger faeces spiked with a dilution series of M. bovis BCG Pasteur and of field samples of faeces from badgers of unknown infection status taken from badger latrines in areas with high and low incidence of bovine TB (bTB) in cattle. Samples were tested with a previously optimised methodology. The experimental design involved rigorous testing which highlighted a number of potential pitfalls in the analysis of environmental samples using real time PCR. Despite minor variation between operators and laboratories, the validation study demonstrated good concordance between the three laboratories: on the spiked panels, the test showed high levels of agreement in terms of positive/negative detection, with high specificity (100%) and high sensitivity (97%) at levels of 10(5) cells g(-1) and above. Quantitative analysis of the data revealed low variability in recovery of BCG cells between laboratories and operators. On the field samples, the test showed high reproducibility both in terms of positive/negative detection and in the number of cells detected, despite low numbers of samples identified as positive by any laboratory. Use of a parallel PCR inhibition control assay revealed negligible PCR-interfering chemicals co-extracted with the DNA. This is the first example of a multi-laboratory validation of a real time PCR assay for the detection of mycobacteria in environmental samples. Field studies are now required to determine how best to apply the assay for population-level bTB surveillance in wildlife.