2 resultados para Glia de Bergmann e Cerebelo

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La comunicación entre las neuronas ocurre en regiones anatómicamente identificables denominadas sinapsis. Existen dos tipos de transmisión sináptica, las sinapsis químicas y las eléctricas, aunque predominan las sinapsis químicas. En este tipo de sinapsis, la comunicación neuronal ocurre en zonas especializadas de los axones, denominados terminales sinápticos, los cuales almacenan en su interior pequeñas vesículas que contienen un neurotransmisor. Ante la llegada de un potencial de acción al terminal presináptico, el flujo de calcio, generado a través de la apertura de canales de calcio voltaje-dependientes, provoca la fusión de las vesículas con la membrana del terminal presináptico, y la liberación del neurotransmisor a la hendidura sináptica. La fusión vesicular tiene lugar en regiones de membrana del terminal presináptico, molecularmente especializadas para dicho evento exocitótico, denominadas Zonas Activas. Este neurotransmisor liberado difunde por la hendidura sináptica y se une a receptores específicos ubicados en la membrana de la neurona postsináptica, propagándose así el impulso nervioso. Tras este evento exocitótico, que implica la fusión de multitud de vesículas, es necesario un proceso de endocitosis, que ocurre en las zonas perisinápticas, y que está encargado de recuperar las fracciones de membrana que formaban las vesículas sinápticas, con dos objetivos: 1. Impedir el aumento de la superficie de la zona activa, lo cual llevaría a su desestructuración, y 2. La formación de nuevas vesículas que se rellenen de neurotransmisor y puedan prepararse para una nueva ronda de exocitosis. La endocitosis que sigue a un estímulo moderado, está mediada por clatrina y recicla vesículas independientes preparadas para el rellenado con neurotransmisor. Tras estímulos intensos que provocan exocitosis de múltiples vesículas, la retirada de membrana ocurre a través de otro mecanismo más lento y menos eficaz, denominado endocitosis en masa, el cual recicla grandes fragmentos de membrana y acumula estructuras endosomales en el interior del terminal, los cuales no siempre rinden vesículas funcionales inmediatamente...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to their permanent and close proximity to neurons, glial cells perform essential tasks for the normal physiology of the retina. Astrocytes andM¨uller cells (retinal macroglia) provide physical support to neurons and supplement them with several metabolites and growth factors.Macroglia are involved in maintaining the homeostasis of extracellular ions and neurotransmitters, are essential for information processing in neural circuits, participate in retinal glucose metabolism and in removing metabolic waste products, regulate local blood flow, induce the blood-retinal barrier (BRB), play fundamental roles in local immune response, and protect neurons from oxidative damage. In response to polyetiological insults, glia cells react with a process called reactive gliosis, seeking to maintain retinal homeostasis. When malfunctioning, macroglial cells can become primary pathogenic elements. A reactive gliosis has been described in different retinal pathologies, including age-related macular degeneration (AMD), diabetes, glaucoma, retinal detachment, or retinitis pigmentosa. A better understanding of the dual, neuroprotective, or cytotoxic effect of macroglial involvement in retinal pathologies would help in treating the physiopathology of these diseases.The extensive participation of the macroglia in retinal diseases points to these cells as innovative targets for new drug therapies.