2 resultados para Gaussian kernel
em Universidade Complutense de Madrid
Resumo:
Para entender nuestro proyecto, debemos comprender DEVS. Dentro de los formalismos más populares de representación de sistemas de eventos discretos se encuentra DES. En la década de los 70, el matemático Bernard Zeigler propuso un formalismo general para la representación de dichos sistemas. Este formalismo denominado DEVS (Discrete EVent System Specification) es el formalismo más general para el tratamiento de DES. DEVS permite representar todos aquellos sistemas cuyo comportamiento pueda describirse mediante una secuencia de eventos discretos. Estos eventos se caracterizan por un tiempo base en el que solo un número de eventos finitos puede ocurrir. DEVS Modelado y Simulación tiene múltiples implementaciones en varios lenguajes de programación como por ejemplo en Java, C# o C++. Pero surge la necesidad de implementar una plataforma distribuida estable para proporcionar la mecánica de interoperabilidad e integrar modelos DEVS diversificados. En este proyecto, se nos dará como código base el core de xDEVS en java, aplicado de forma secuencial y paralelizada. Nuestro trabajo será implementar el core de manera distribuida de tal forma que se pueda dividir un sistema DEVS en diversas máquinas. Para esto hemos utilizado sockets de java para hacer la transmisión de datos lo más eficiente posible. En un principio deberemos especificar el número de máquinas que se conectarán al servidor. Una vez estas se hayan conectado se les enviará el trabajo específico que deberán simular. Cabe destacar que hay dos formas de dividir un sistema DEVS las cuales están implementadas en nuestro proyecto. La primera es dividirlo en módulos atómicos los cuales son subsistemas indivisibles en un sistema DEVS. Y la segunda es dividir las funciones de todos los subsistemas en grupos y repartirlos entre las máquinas. En resumen el funcionamiento de nuestro sistema distribuido será comenzar ejecutando el trabajo asignado al primer cliente, una vez finalizado actualizará la información del servidor y este mandara la orden al siguiente y así sucesivamente.
Resumo:
In this work, we study a version of the general question of how well a Haar-distributed orthogonal matrix can be approximated by a random Gaussian matrix. Here, we consider a Gaussian random matrix (Formula presented.) of order n and apply to it the Gram–Schmidt orthonormalization procedure by columns to obtain a Haar-distributed orthogonal matrix (Formula presented.). If (Formula presented.) denotes the vector formed by the first m-coordinates of the ith row of (Formula presented.) and (Formula presented.), our main result shows that the Euclidean norm of (Formula presented.) converges exponentially fast to (Formula presented.), up to negligible terms. To show the extent of this result, we use it to study the convergence of the supremum norm (Formula presented.) and we find a coupling that improves by a factor (Formula presented.) the recently proved best known upper bound on (Formula presented.). Our main result also has applications in Quantum Information Theory.