6 resultados para Gas manufacture and works
em Universidade Complutense de Madrid
Resumo:
We present optical integral field spectroscopy (IFS) observations of the Mice, a major merger between two massive (≳10^11 M_⊙) gas-rich spirals NGC 4676A and B, observed between first passage and final coalescence. The spectra provide stellar and gas kinematics, ionised gas properties, and stellar population diagnostics, over the full optical extent of both galaxies with ~1.6 kpc spatial resolution. The Mice galaxies provide a perfect case study that highlights the importance of IFS data for improving our understanding of local galaxies. The impact of first passage on the kinematics of the stars and gas has been significant, with strong bars most likely induced in both galaxies. The barred spiral NGC 4676B exhibits a strong twist in both its stellar and ionised gas disk. The edge-on disk galaxy NGC 4676A appears to be bulge free, with a strong bar causing its “boxy” light profile. On the other hand, the impact of the merger on the stellar populations has been minimal thus far. By combining the IFS data with archival multiwavelength observations we show that star formation induced by the recent close passage has not contributed significantly to the total star formation rate or stellar mass of the galaxies. Both galaxies show bicones of high ionisation gas extending along their minor axes. In NGC 4676A the high gas velocity dispersion and Seyfert-like line ratios at large scaleheight indicate a powerful outflow. Fast shocks (vs ~ 350 km s^-1) extend to ~6.6 kpc above the disk plane. The measured ram pressure (P/k = 4.8 × 10^6 K cm^-3) and mass outflow rate (~8−20 M_⊙ yr^-1) are similar to superwinds from local ultra-luminous infrared galaxies, although NGC 4676A only has a moderate infrared luminosity of 3 × 10^10 L_⊙. Energy beyond what is provided by the mechanical energy of the starburst appears to be required to drive the outflow. Finally, we compare the observations to mock kinematic and stellar population maps extracted from a hydrodynamical merger simulation. The models show little enhancement in star formation during and following first passage, in agreement with the observations. We highlight areas where IFS data could help further constrain the models.
Resumo:
As part of the ongoing CALIFA survey, we have conducted a thorough bidimensional analysis of the ionized gas in two E/S0 galaxies, NGC 6762 and NGC 5966, aiming to shed light on the nature of their warm ionized ISM. Specifically, we present optical (3745–7300 Å) integral field spectroscopy obtained with the PMAS/PPAK integral field spectrophotometer. Its wide field-of-view (1′ × 1′) covers the entire optical extent of each galaxy down to faint continuum surface brightnesses. To recover the nebular lines, we modeled and subtracted the underlying stellar continuum from the observed spectra using the STARLIGHT spectral synthesis code. The pure emission-line spectra were used to investigate the gas properties and determine the possible sources of ionization. We show the advantages of IFU data in interpreting the complex nature of the ionized gas in NGC 6762 and NGC 5966. In NGC 6762, the ionized gas and stellar emission display similar morphologies, while the emission line morphology is elongated in NGC 5966, spanning ~6 kpc, and is oriented roughly orthogonal to the major axis of the stellar continuum ellipsoid. Whereas gas and stars are kinematically aligned in NGC 6762, the gas is kinematically decoupled from the stars in NGC 5966. A decoupled rotating disk or an “ionization cone” are two possible interpretations of the elongated ionized gas structure in NGC 5966. The latter would be the first “ionization cone” of such a dimension detected within a weak emission-line galaxy. Both galaxies have weak emission-lines relative to the continuum[EW(Hα) ≲ 3 Å] and have very low excitation, log([OIII]λ5007/Hβ) ≲ 0.5. Based on optical diagnostic ratios ([OIII]λ5007/Hβ, [NII]λ6584/Hα, [SII]λ6717, 6731/Hα, [OI]λ6300/Hα), both objects contain a LINER nucleus and an extended LINER-like gas emission. The emission line ratios do not vary significantly with radius or aperture, which indicates that the nebular properties are spatially homogeneous. The gas emission in NGC 6762 can be best explained by photoionization by pAGB stars without the need of invoking any other excitation mechanism. In the case of NGC 5966, the presence of a nuclear ionizing source seems to be required to shape the elongated gas emission feature in the “ionization cone” scenario, although ionization by pAGB stars cannot be ruled out. Further study of this object is needed to clarify the nature of its elongated gas structure.
Resumo:
There is substantial empirical evidence that energy and financial markets are closely connected. As one of the most widely-used energy resources worldwide, natural gas has a large daily trading volume. In order to hedge the risk of natural gas spot markets, a large number of hedging strategies can be used, especially with the rapid development of natural gas derivatives markets. These hedging instruments include natural gas futures and options, as well as Exchange Traded Fund (ETF) prices that are related to natural gas stock prices. The volatility spillover effect is the delayed effect of a returns shock in one physical, biological or financial asset on the subsequent volatility or co-volatility of another physical, biological or financial asset. Investigating volatility spillovers within and across energy and financial markets is a crucial aspect of constructing optimal dynamic hedging strategies. The paper tests and calculates spillover effects among natural gas spot, futures and ETF markets using the multivariate conditional volatility diagonal BEKK model. The data used include natural gas spot and futures returns data from two major international natural gas derivatives markets, namely NYMEX (USA) and ICE (UK), as well as ETF data of natural gas companies from the stock markets in the USA and UK. The empirical results show that there are significant spillover effects in natural gas spot, futures and ETF markets for both USA and UK. Such a result suggests that both natural gas futures and ETF products within and beyond the country might be considered when constructing optimal dynamic hedging strategies for natural gas spot prices.
Resumo:
Context. Galaxies, which often contain ionised gas, sometimes also exhibit a so-called low-ionisation nuclear emission line region (LINER). For 30 years, this was attributed to a central mass-accreting supermassive black hole (more commonly known as active galactic nucleus, AGN) of low luminosity, making LINER galaxies the largest AGN sub-population, which dominate in numbers over higher luminosity Seyfert galaxies and quasars. This, however, poses a serious problem. While the inferred energy balance is plausible, many LINERs clearly do not contain any other independent signatures of an AGN. Aims. Using integral field spectroscopic data from the CALIFA survey, we compare the observed radial surface brightness profiles with what is expected from illumination by an AGN. Methods. Essential for this analysis is a proper extraction of emission lines, especially weak lines, such as Balmer H beta lines, which are superposed on an absorption trough. To accomplish this, we use the GANDALF code, which simultaneously fits the underlying stellar continuum and emission lines. Results. For 48 galaxies with LINER-like emission, we show that the radial emission-line surface brightness profiles are inconsistent with ionisation by a central point-source and hence cannot be due to an AGN alone. Conclusions. The most probable explanation for the excess LINER-like emission is ionisation by evolved stars during the short but very hot and energetic phase known as post-AGB. This leads us to an entirely new interpretation. Post-AGB stars are ubiquitous and their ionising effect should be potentially observable in every galaxy with the gas present and with stars older than ~1 Gyr unless a stronger radiation field from young hot stars or an AGN outshines them. This means that galaxies with LINER-like emission are not a class defined by a property but rather by the absence of a property. It also explains why LINER emission is observed mostly in massive galaxies with old stars and little star formation.
Resumo:
We present Submillimeter Array [C II] 158 μm and Karl G. Jansky Very Large Array 12^CO(1-0) line emission maps for the bright, lensed, submillimeter source at z = 5.2430 behind A 773: HLSJ091828.6+514223 (HLS0918). We combine these measurements with previously reported line profiles, including multiple 12^CO rotational transitions, [C I], water, and [N II], providing some of the best constraints on the properties of the interstellar medium in a galaxy at z > 5. HLS0918 has a total far-infrared (FIR) luminosity L_FIR(8–1000 μm) = (1.6 ± 0.1) × 10^14 L_☉ μ^–1, where the total magnification μ_total = 8.9 ± 1.9, via a new lens model from the [C II] and continuum maps. Despite a HyLIRG luminosity, the FIR continuum shape resembles that of a local LIRG. We simultaneously fit all of the observed spectral line profiles, finding four components that correspond cleanly to discrete spatial structures identified in the maps. The two most redshifted spectral components occupy the nucleus of a massive galaxy, with a source-plane separation <1 kpc. The reddest dominates the continuum map (demagnified L_FIR, component = (1.1 ± 0.2) × 10^13 L_☉) and excites strong water emission in both nuclear components via a powerful FIR radiation field from the intense star formation. A third star-forming component is most likely a region of a merging companion (ΔV ~ 500 km s^–1) exhibiting generally similar gas properties. The bluest component originates from a spatially distinct region and photodissociation region analysis suggests that it is lower density, cooler, and forming stars less vigorously than the other components. Strikingly, it has very strong [N II] emission, which may suggest an ionized, molecular outflow. This comprehensive view of gas properties and morphology in HLS0918 previews the science possible for a large sample of high-redshift galaxies once ALMA attains full sensitivity.
Resumo:
We use a new stacking technique to obtain mean mid-IR and far-IR to far-UV flux ratios over the rest-frame near-UV, near-IR color-magnitude diagram. We employ COMBO-17 redshifts and COMBO-17 optical, GALEX far- and near-UV, and Spitzer IRAC and MIPS mid-IR photometry. This technique permits us to probe the infrared excess (IRX), the ratio of far-IR to far-UV luminosity, and the specific star formation rate (SSFR) and their coevolution over 2 orders of magnitude of stellar mass and over redshift 0.1 < z < 1.2. We find that the SSFR and the characteristic mass (Script M_0) above which the SSFR drops increase with redshift (downsizing). At any given epoch, the IRX is an increasing function of mass up to Script M_0. Above this mass the IRX falls, suggesting gas exhaustion. In a given mass bin below Script M_0, the IRX increases with time in a fashion consistent with enrichment. We interpret these trends using a simple model with a Schmidt-Kennicutt law and extinction that tracks gas density and enrichment. We find that the average IRX and SSFR follow a galaxy age parameter ξ, which is determined mainly by the galaxy mass and time since formation. We conclude that blue-sequence galaxies have properties which show simple, systematic trends with mass and time such as the steady buildup of heavy elements in the interstellar media of evolving galaxies and the exhaustion of gas in galaxies that are evolving off the blue sequence. The IRX represents a tool for selecting galaxies at various stages of evolution.