2 resultados para Gale-Shapley algorithm

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this paper is the assessment of groups of agents or units in a network organization. Given a social network, the relations between agents are modeled by means of a graph, and its functionality will be codified by means of a cooperative game. Building on previous work of Gomez et al. (2003) for the individual case, we propose a Myerson group value to evaluate the ability of each group of agents inside the social network to achieve the organization's goals. We analyze this centrality measure, and in particular we offer several decompositions that facilitate obtaining a precise interpretation of it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a modelling method to estimate the 3-D geometry and location of homogeneously magnetized sources from magnetic anomaly data. As input information, the procedure needs the parameters defining the magnetization vector (intensity, inclination and declination) and the Earth's magnetic field direction. When these two vectors are expected to be different in direction, we propose to estimate the magnetization direction from the magnetic map. Then, using this information, we apply an inversion approach based on a genetic algorithm which finds the geometry of the sources by seeking the optimum solution from an initial population of models in successive iterations through an evolutionary process. The evolution consists of three genetic operators (selection, crossover and mutation), which act on each generation, and a smoothing operator, which looks for the best fit to the observed data and a solution consisting of plausible compact sources. The method allows the use of non-gridded, non-planar and inaccurate anomaly data and non-regular subsurface partitions. In addition, neither constraints for the depth to the top of the sources nor an initial model are necessary, although previous models can be incorporated into the process. We show the results of a test using two complex synthetic anomalies to demonstrate the efficiency of our inversion method. The application to real data is illustrated with aeromagnetic data of the volcanic island of Gran Canaria (Canary Islands).