2 resultados para Gabor profili recettori correlazione curve integrali
em Universidade Complutense de Madrid
Resumo:
This paper provides a new reading of a classical economic relation: the short-run Phillips curve. Our point is that, when dealing with inflation and unemployment, policy-making can be understood as a multicriteria decisionmaking problem. Hence, we use so-called multiobjective programming in connection with a computable general equilibrium (CGE) model to determine the combinations of policy instruments that provide efficient combinations of inflation and unemployment. This approach results in an alternative version of the Phillips curve labelled as efficient Phillips curve. Our aim is to present an application of CGE models to a new area of research that can be especially useful when addressing policy exercises with real data. We apply our methodological proposal within a particular regional economy, Andalusia, in the south of Spain. This tool can give some keys for policy advice and policy implementation in the fight against unemployment and inflation.
Resumo:
Dust attenuation affects nearly all observational aspects of galaxy evolution, yet very little is known about the form of the dust-attenuation law in the distant universe. Here, we model the spectral energy distributions of galaxies at z ~ 1.5–3 from CANDELS with rest-frame UV to near-IR imaging under different assumptions about the dust law, and compare the amount of inferred attenuated light with the observed infrared (IR) luminosities. Some individual galaxies show strong Bayesian evidence in preference of one dust law over another, and this preference agrees with their observed location on the plane of infrared excess (IRX, L_TIR/L_UV) and UV slope (β). We generalize the shape of the dust law with an empirical model, A_ λ,σ =E(B-V)k_ λ (λ / λ v)^ σ where k_λ is the dust law of Calzetti et al., and show that there exists a correlation between the color excess E(B-V) and tilt δ with δ =(0.62±0.05)log(E(B-V))+(0.26±0.02). Galaxies with high color excess have a shallower, starburst-like law, and those with low color excess have a steeper, SMC-like law. Surprisingly, the galaxies in our sample show no correlation between the shape of the dust law and stellar mass, star formation rate, or β. The change in the dust law with color excess is consistent with a model where attenuation is caused by scattering, a mixed star–dust geometry, and/or trends with stellar population age, metallicity, and dust grain size. This rest-frame UV-to-near-IR method shows potential to constrain the dust law at even higher redshifts (z>3).