5 resultados para GALAXIES: GROUPS: GENERAL
em Universidade Complutense de Madrid
Resumo:
We present measurements of the mean mid-infrared to submillimetre flux densities of massive (M_*≳ 10^11 M_⊙) galaxies at redshifts 1.7 < z < 2.9, obtained by stacking positions of known objects taken from the GOODS NICMOS Survey (GNS) catalogue on maps at 24 μm (Spitzer/MIPS); 70, 100 and 160 μm (Herschel/PACS); 250, 350 and 500 μm (BLAST); and 870 μm (LABOCA). A modified blackbody spectrum fit to the stacked flux densities indicates a median [interquartile] star formation rate (SFR) of SFR = 63[48, 81] M_⊙ yr^−1. We note that not properly accounting for correlations between bands when fitting stacked data can significantly bias the result. The galaxies are divided into two groups, disc-like and spheroid-like, according to their Sérsic indices, n. We find evidence that most of the star formation is occurring in n≤ 2 (disc-like) galaxies, with median [interquartile] SFR = 122[100, 150] M_⊙ yr^−1, while there are indications that the n > 2 (spheroid-like) population may be forming stars at a median [interquartile] SFR = 14[9, 20] M_⊙ yr^−1, if at all. Finally, we show that star formation is a plausible mechanism for size evolution in this population as a whole, but find only marginal evidence that it is what drives the expansion of the spheroid-like galaxies.
Resumo:
We present far-infrared (FIR) analysis of 68 brightest cluster galaxies (BCGs) at 0.08 < z < 1.0. Deriving total infrared luminosities directly from Spitzer and Herschel photometry spanning the peak of the dust component (24-500 μm), we calculate the obscured star formation rate (SFR). 22^+6.2 _–5.3% of the BCGs are detected in the far-infrared, with SFR = 1-150 M ☉ yr^–1. The infrared luminosity is highly correlated with cluster X-ray gas cooling times for cool-core clusters (gas cooling time <1 Gyr), strongly suggesting that the star formation in these BCGs is influenced by the cluster-scale cooling process. The occurrence of the molecular gas tracing Hα emission is also correlated with obscured star formation. For all but the most luminous BCGs (L_TIR > 2 × 10^11 L_☉), only a small (≤0.4 mag) reddening correction is required for SFR(Hα) to agree with SFR_FIR. The relatively low Hα extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate from normal stellar mass loss.
Resumo:
El presente trabajo consiste en dos partes diferenciadas: la principal de ellas (Cap tulos 1 y 2) est a dedicada a introducir estructura adicional en grupos que aparecen de manera natural en el contexto de la teor a de la forma. En la segunda parte (Cap tulo 3), se plantea c omo generalizar la teor a de espacios recubridores y, en particular, se propone una l nea de trabajo relacionada con la teor a de la forma. El punto de partida de esta tesis doctoral son los trabajos [25, 26, 68, 69, 70] en los que los autores introducen y utilizan algunas ultram etricas en el conjunto de los mor smos shape entre dos espacios topol ogicos punteados. En particular, si el dominio es (S1; 1); la construcci on realizada en [68] permite explicitar una ultram etrica en el grupo shape 1(X; x0) de un espacio m etrico compacto X; como ya fue observado en [69] y [80]. Si el espacio no es m etrico compacto, la construcci on nos lleva a utilizar el concepto de ultram etrica generalizada, en el sentido de Priess-Crampe y Ribenboim [78, 79]. En [7], D. K. Biss introduce la idea de topologizar el grupo fundamental de un espacio, de forma que la topolog a en 1(X; x0) sea una topolog a de grupo que permita detectar la (no) existencia de un recubridor universal para X: La forma de proceder sugerida es tomar en 1(X; x0)la toplog a cociente inducida por la topolog a compacto-abierta en el espacio de lazos (X; x0): Sin embargo, hay algunos errores en el art culo mencionado: en concreto, el error relacionado con el presente trabajo fue puesto de mani esto por P. Fabel en [33], mostrando que, en general, la operaci on de grupo en 1(X; x0)con la topolog a cociente no es continua. Utilizando un punto de vista similar, varios autores han tratado de dotar al grupo fundamental con una topolog a, de forma que 1(X; x0) sea un grupo topol ogico y la proyecci on q (X; x0){u100000} 1(X; x0)sea continua...
Resumo:
A classical study about Klein and Riemann surfaces consists in determining their groups of automorphisms. This problem is very difficult in general,and it has been solved for particular families of surfaces or for fixed topological types. In this paper, we calculate the automorphism groups of non-orientable bordered elliptic-hyperelliptic Klein surfaces of algebraic genus p> 5.
Resumo:
A counterpart of the Mackey–Arens Theorem for the class of locally quasi-convex topological Abelian groups (LQC-groups) was initiated in Chasco et al. (Stud Math 132(3):257–284, 1999). Several authors have been interested in the problems posed there and have done clarifying contributions, although the main question of that source remains open. Some differences between the Mackey Theory for locally convex spaces and for locally quasi-convex groups, stem from the following fact: The supremum of all compatible locally quasi-convex topologies for a topological abelian group G may not coincide with the topology of uniform convergence on the weak quasi-convex compact subsets of the dual groupG∧. Thus, a substantial part of the classical Mackey–Arens Theorem cannot be generalized to LQC-groups. Furthermore, the mentioned fact gives rise to a grading in the property of “being a Mackey group”, as defined and thoroughly studied in Díaz Nieto and Martín-Peinador (Proceedings in Mathematics and Statistics 80:119–144, 2014). At present it is not known—and this is the main open question—if the supremum of all the compatible locally quasi-convex topologies on a topological group is in fact a compatible topology. In the present paper we do a sort of historical review on the Mackey Theory, and we compare it in the two settings of locally convex spaces and of locally quasi-convex groups. We point out some general questions which are still open, under the name of Problems.