6 resultados para Finite dimensional simple algebra

em Universidade Complutense de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated the phase transition in the Heisenberg spin glass using massive numerical simulations to study very large sizes, 483. A finite-size scaling analysis indicates that the data are compatible with the most economical scenario: a common transition temperature for spins and chiralities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the effects of finite temperature on the dynamics of non-planar vortices in the classical, two-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry. To this end, we analyze a generalized Landau-Lifshitz equation including additive white noise and Gilbert damping. Using a collective variable theory with no adjustable parameters we derive an equation of motion for the vortices with stochastic forces which are shown to represent white noise with an effective diffusion constant linearly dependent on temperature. We solve these stochastic equations of motion by means of a Green's function formalism and obtain the mean vortex trajectory and its variance. We find a non-standard time dependence for the variance of the components perpendicular to the driving force. We compare the analytical results with Langevin dynamics simulations and find a good agreement up to temperatures of the order of 25% of the Kosterlitz-Thouless transition temperature. Finally, we discuss the reasons why our approach is not appropriate for higher temperatures as well as the discreteness effects observed in the numerical simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the sample-to-sample fluctuations of the overlap probability densities from large-scale equilibrium simulations of the three-dimensional Edwards-Anderson spin glass below the critical temperature. Ultrametricity, stochastic stability, and overlap equivalence impose constraints on the moments of the overlap probability densities that can be tested against numerical data. We found small deviations from the Ghirlanda Guerra predictions, which get smaller as system size increases. We also focus on the shape of the overlap distribution, comparing the numerical data to a mean-field-like prediction in which finite-size effects are taken into account by substituting delta functions with broad peaks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the results of large scale numerical simulations we study the probability distribution of the pseudo critical temperature for the three dimensional Edwards Anderson Ising spin glass and for the fully connected Sherrington-Kirkpatrick model. We find that the behaviour of our data is nicely described by straightforward finitesize scaling relations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A microcanonical finite-size ansatz in terms of quantities measurable in a finite lattice allows extending phenomenological renormalization the so-called quotients method to the microcanonical ensemble. The ansatz is tested numerically in two models where the canonical specific heat diverges at criticality, thus implying Fisher renormalization of the critical exponents: the three-dimensional ferromagnetic Ising model and the two-dimensional four-state Potts model (where large logarithmic corrections are known to occur in the canonical ensemble). A recently proposed microcanonical cluster method allows simulating systems as large as L = 1024 Potts or L= 128 (Ising). The quotients method provides accurate determinations of the anomalous dimension, η, and of the (Fisher-renormalized) thermal ν exponent. While in the Ising model the numerical agreement with our theoretical expectations is very good, in the Potts case, we need to carefully incorporate logarithmic corrections to the microcanonical ansatz in order to rationalize our data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the first detailed numerical study in three dimensions of a first-order phase transition that remains first order in the presence of quenched disorder (specifically, the ferromagnetic-paramagnetic transition of the site-diluted four states Potts model). A tricritical point, which lies surprisingly near the pure-system limit and is studied by means of finite-size scaling, separates the first-order and second-order parts of the critical line. This investigation has been made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that plague the standard approach. Entropy, rather than free energy, is the basic object in this approach that exploits a recently introduced microcanonical Monte Carlo method.