2 resultados para Fiber type i and ii

em Universidade Complutense de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium avium subsp. paratuberculosis is an important animal pathogen widely disseminated in the environment that has also been associated with Crohn's disease in humans. Three M. avium subsp. paratuberculosis genomotypes are recognized, but genomic differences have not been fully described. To further investigate these potential differences, a 60-mer oligonucleotide microarray (designated the MAPAC array), based on the combined genomes of M. avium subsp. paratuberculosis (strain K-10) and Mycobacterium avium subsp. hominissuis (strain 104), was designed and validated. By use of a test panel of defined M. avium subsp. paratuberculosis strains, the MAPAC array was able to identify a set of large sequence polymorphisms (LSPs) diagnostic for each of the three major M. avium subsp. paratuberculosis types. M. avium subsp. paratuberculosis type II strains contained a smaller genomic complement than M. avium subsp. paratuberculosis type I and M. avium subsp. paratuberculosis type III genomotypes, which included a set of genomic regions also found in M. avium subsp. hominissuis 104. Specific PCRs for genes within LSPs that differentiated M. avium subsp. paratuberculosis types were devised and shown to accurately screen a panel (n = 78) of M. avium subsp. paratuberculosis strains. Analysis of insertion/deletion region INDEL12 showed deletion events causing a reduction in the complement of mycobacterial cell entry genes in M. avium subsp. paratuberculosis type II strains and significantly altering the coding of a major immunologic protein (MPT64) associated with persistence and granuloma formation. Analysis of MAPAC data also identified signal variations in several genomic regions, termed variable genomic islands (vGIs), suggestive of transient duplication/deletion events. vGIs contained significantly low GC% and were immediately flanked by insertion sequences, integrases, or short inverted repeat sequences. Quantitative PCR demonstrated that variation in vGI signals could be associated with colony growth rate and morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pandemic methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 97 (CC97) lineages originated from livestock-to-human host jumps. In recent years, CC97 has become one of the major MRSA lineages detected in Italian farmed animals. The aim of this study was to characterize and analyze differences in MRSA and methicillin-susceptible S. aureus (MSSA) mainly of swine and bovine origins. Forty-seven CC97 isolates, 35 MRSA isolates, and 6 MSSA isolates from different Italian pig and cattle holdings; 5 pig MRSA isolates from Germany; and 1 human MSSA isolate from Spain were characterized by macrorestriction pulsed-field gel electrophoresis (PFGE) analysis, multilocus sequence typing (MLST), spa typing, staphylococcal cassette chromosome mec (SCCmec) typing, and antimicrobial resistance pattern analysis. Virulence and resistance genes were investigated by PCR and microarray analysis. Most of the isolates were of SCCmec type V (SCCmec V), except for two German MRSA isolates (SCCmec III). Five main clusters were identified by PFGE, with the German isolates (clusters I and II) showing 60.5% similarity with the Italian isolates, most of which (68.1%) grouped into cluster V. All CC97 isolates were Panton-Valentine leukocidin (PVL) negative, and a few (n = 7) tested positive for sak or scn. All MRSA isolates were multidrug resistant (MDR), and the main features were erm(B)- or erm(C)-mediated (n = 18) macrolide-lincosamide-streptogramin B resistance, vga(A)-mediated (n = 37) pleuromutilin resistance, fluoroquinolone resistance (n = 33), tet(K) in 32/37 tet(M)-positive isolates, and blaZ in almost all MRSA isolates. Few host-associated differences were detected among CC97 MRSA isolates: their extensive MDR nature in both pigs and dairy cattle may be a consequence of a spillback from pigs of a MRSA lineage that originated in cattle as MSSA and needs further investigation. Measures should be implemented at the farm level to prevent spillover to humans in intensive farming areas.