3 resultados para FERROMAGNETIC PHASE
em Universidade Complutense de Madrid
Resumo:
A microcanonical finite-size ansatz in terms of quantities measurable in a finite lattice allows extending phenomenological renormalization the so-called quotients method to the microcanonical ensemble. The ansatz is tested numerically in two models where the canonical specific heat diverges at criticality, thus implying Fisher renormalization of the critical exponents: the three-dimensional ferromagnetic Ising model and the two-dimensional four-state Potts model (where large logarithmic corrections are known to occur in the canonical ensemble). A recently proposed microcanonical cluster method allows simulating systems as large as L = 1024 Potts or L= 128 (Ising). The quotients method provides accurate determinations of the anomalous dimension, η, and of the (Fisher-renormalized) thermal ν exponent. While in the Ising model the numerical agreement with our theoretical expectations is very good, in the Potts case, we need to carefully incorporate logarithmic corrections to the microcanonical ansatz in order to rationalize our data.
Resumo:
We perform numerical simulations, including parallel tempering, a four-state Potts glass model with binary random quenched couplings using the JANUS application-oriented computer. We find and characterize a glassy transition, estimating the critical temperature and the value of the critical exponents. Nevertheless, the extrapolation to infinite volume is hampered by strong scaling corrections. We show that there is no ferromagnetic transition in a large temperature range around the glassy critical temperature. We also compare our results with those obtained recently on the “random permutation” Potts glass.
Resumo:
We present a detailed numerical study on the effects of adding quenched impurities to a three dimensional system which in the pure case undergoes a strong first order phase transition (specifically, the ferromagnetic/paramagnetic transition of the site-diluted four states Potts model). We can state that the transition remains first-order in the presence of quenched disorder (a small amount of it) but it turns out to be second order as more impurities are added. A tricritical point, which is studied by means of Finite-Size Scaling, separates the first-order and second-order parts of the critical line. The results were made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that arise using the standard methodology. We also made use of a recently proposed microcanonical Monte Carlo method in which entropy, instead of free energy, is the basic quantity.