4 resultados para Eye.
em Universidade Complutense de Madrid
Resumo:
Dinucleoside polyphosphates comprises a group of dinucleotides formed by two nucleosides linked by a variable number of phosphates, abbreviated NpnN (where n represents the number of phosphates). These compounds are naturally occurring substances present in tears, aqueous humour and in the retina. As the consequence of their presence, these dinucleotides contribute to many ocular physiological processes. On the ocular surface, dinucleoside polyphosphates can stimulate tear secretion, mucin release from goblet cells and they help epithelial wound healing by accelerating cell migration rate. These dinucleotides can also stimulate the presence of proteins known to protect the ocular surface against microorganisms, such as lysozyme and lactoferrin. One of the latest discoveries is the ability of some dinucleotides to facilitate the paracellular way on the cornea, therefore allowing the delivery of compounds, such as antiglaucomatous ones, more easily within the eye. The compound Ap4A has been described being abnormally elevated in patient's tears suffering of dry eye, Sjogren syndrome, congenital aniridia, or after refractive surgery, suggesting this molecule as biomarker for dry eye condition. At the intraocular level, some diadenosine polyphosphates are abnormally elevated in glaucoma patients, and this can be related to the stimulation of a P2Y2 receptor that increases the chloride efflux and water movement in the ciliary epithelium. In the retina, the dinucleotide dCp4U, has been proven to be useful to help in the recovery of retinal detachments. Altogether, dinucleoside polyphosphates are a group of compounds which present relevant physiological actions but which also can perform promising therapeutic benefits.
Resumo:
Purpose: To compare signs and symptoms of dry eye in keratoconus (KC) patients versus healthy subjects. Methods: A total of 15 KC patients (KC group, n = 15 eyes) and 16 healthy subjects (control group, 16 eyes) were enrolled in this study. The Schirmer I test with no anesthetic, tear break-up time (TBUT), corneal staining characteristics, and ocular surface disease index (OSDI) scores were evaluated for both groups. Impression cytology, combined with/scanning laser confocal microscopy (LCM), was performed to evaluate goblet cell density, mucin cloud height (MCH), and goblet cell layer thickness (CLT). Finally, tear concentrations of di-adenosine tetraphosphate (Ap4A) were assessed. Results were statistically analyzed using Shapiro–Wilk and non-parametric Wilcoxon rank sum tests. Statistical significance was set at p < 0.05. Results: KC patients had lower tear volumes and greater corneal staining than did healthy subjects (p < 0.05). OSDI scores were 44.96 ± 8.65 and 17.78 ± 6.50 for the KC and control groups, respectively (p < 0.05). We found no statistically significant differences in TBUT between groups. Impression cytology revealed lower goblet cell densities in KC group patients versus control group subjects (84.88 ± 32.98 and 128.88 ± 50.60 cells/mm,2 respectively, p < 0.05). There was a statistically significant reduction in MCH and CLT in KC group patients compared with control group subjects. Ap4A tear concentrations were higher in KC group patients than in control group subjects (2.56 ± 1.10 and 0.15 ± 0.12 µM, respectively, p < 0.05). Conclusions: The parameters evaluated in this study indicate that KC patients suffer greater symptoms of dry eye and greater tear instability, primarily due to the decreased mucin production in their tears, than do healthy patients with no KC.
Resumo:
Purpose. To analyze the levels of the diadenosine polyphosphates Ap4A and Ap5A in tears, in a set of control subjects and in groups of symptomatic and nonsymptomatic persons with dry eye. Methods. Ninety-seven subjects participated in the study. The subjects were divided into five experimental groups: control subjects; symptomatic patients with normal tear secretion; symptomatic patients with low tear secretion; forced blink; and corneal mechanical stimulation provided by a gas esthesiometer. The Schirmer I test was used to measure and collect tear secretions from each subject. All samples were processed by high pressure liquid chromatography (HPLC) and their Ap4A and Ap5A levels determined. Results. The levels of Ap4A and Ap5A in tears were greater in all symptomatic patients than in control subjects, especially in symptomatic subjects with low tear secretion. Within the symptomatic subjects with normal tear secretion, significant differences in concentrations of Ap4A and Ap5A were found between men and women. In the forced blink experiments, concentrations of the Ap4A and Ap5A rose with increasing blink frequency. When the cornea was mechanically stimulated, the levels of Ap4A and Ap5A rose significantly during both moderate and high-flow rate tests. Conclusions. The increased levels of Ap4A and Ap5A in tears of patients with dry eye allow these dinucleotides to be used as objective biomarkers in dry eye conditions.
Resumo:
Over the last few decades, the importance of ophthalmic examination in neurodegenerative diseases of the CNS has reportedly increased. The retina is an extension of the CNS and thus should not be surprising to find abnormal results in both the test exploring visual processing and those examining the retina of patients with CNS degeneration. Current in vivo imaging techniques are allowing ophthalmologists to detect and quantify data consistent with the histopathological findings described in the retinas of Alzheimer’s disease (AD) patients and may help to reveal unsuspected retinal and optic‐nerve repercussions of other CNS diseases. In this chapter, we perform an analysis of the physiological changes in ocular and cerebral ageing. We analyse the ocular manifestations in CNS disorders such as stroke, AD and Parkinson’s disease. In addition, the pathophysiology of both the eye and the visual pathway in AD are described. The value of the visual psychophysical tests in AD diagnosis is reviewed as well as the main findings of the optical coherence tomography as a contribution to the diagnosis and monitoring of the disease. Finally, we examine the association of two neurodegenerative diseases, AD and glaucoma, as mere coincidence or possible role in the progression of the neurodegeneration.