2 resultados para Extreme values

em Universidade Complutense de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we examine the time T to reach a critical number K0 of infections during an outbreak in an epidemic model with infective and susceptible immigrants. The underlying process X, which was first introduced by Ridler-Rowe (1967), is related to recurrent diseases and it appears to be analytically intractable. We present an approximating model inspired from the use of extreme values, and we derive formulae for the Laplace-Stieltjes transform of T and its moments, which are evaluated by using an iterative procedure. Numerical examples are presented to illustrate the effects of the contact and removal rates on the expected values of T and the threshold K0, when the initial time instant corresponds to an invasion time. We also study the exact reproduction number Rexact,0 and the population transmission number Rp, which are random versions of the basic reproduction number R0.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bayesian adaptive methods have been extensively used in psychophysics to estimate the point at which performance on a task attains arbitrary percentage levels, although the statistical properties of these estimators have never been assessed. We used simulation techniques to determine the small-sample properties of Bayesian estimators of arbitrary performance points, specifically addressing the issues of bias and precision as a function of the target percentage level. The study covered three major types of psychophysical task (yes-no detection, 2AFC discrimination and 2AFC detection) and explored the entire range of target performance levels allowed for by each task. Other factors included in the study were the form and parameters of the actual psychometric function Psi, the form and parameters of the model function M assumed in the Bayesian method, and the location of Psi within the parameter space. Our results indicate that Bayesian adaptive methods render unbiased estimators of any arbitrary point on psi only when M=Psi, and otherwise they yield bias whose magnitude can be considerable as the target level moves away from the midpoint of the range of Psi. The standard error of the estimator also increases as the target level approaches extreme values whether or not M=Psi. Contrary to widespread belief, neither the performance level at which bias is null nor that at which standard error is minimal can be predicted by the sweat factor. A closed-form expression nevertheless gives a reasonable fit to data describing the dependence of standard error on number of trials and target level, which allows determination of the number of trials that must be administered to obtain estimates with prescribed precision.