3 resultados para Euclidean geometry

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let G be the fundamental group of the complement of the torus knot of type (m, n). It has a presentation G = . We find a geometric description of the character variety X(G) of characters of representations of G into SL(3,ℂ), GL(3,ℂ) and PGL(3,ℂ).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal antennas have been proposed to improve the bandwidth of resonant structures and optical antennas. Their multiband characteristics are of interest in radiofrequency and microwave technologies. In this contribution we link the geometry of the current paths built-in the fractal antenna with the spectral response. We have seen that the actual currents owing through the structure are not limited to the portion of the fractal that should be geometrically linked with the signal. This fact strongly depends on the design of the fractal and how the different scales are arranged within the antenna. Some ideas involving materials that could actively respond to the incoming radiation could be of help to spectrally select the response of the multiband design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we study a version of the general question of how well a Haar-distributed orthogonal matrix can be approximated by a random Gaussian matrix. Here, we consider a Gaussian random matrix (Formula presented.) of order n and apply to it the Gram–Schmidt orthonormalization procedure by columns to obtain a Haar-distributed orthogonal matrix (Formula presented.). If (Formula presented.) denotes the vector formed by the first m-coordinates of the ith row of (Formula presented.) and (Formula presented.), our main result shows that the Euclidean norm of (Formula presented.) converges exponentially fast to (Formula presented.), up to negligible terms. To show the extent of this result, we use it to study the convergence of the supremum norm (Formula presented.) and we find a coupling that improves by a factor (Formula presented.) the recently proved best known upper bound on (Formula presented.). Our main result also has applications in Quantum Information Theory.