3 resultados para Euclidean distance model,
em Universidade Complutense de Madrid
Resumo:
In this work, we study a version of the general question of how well a Haar-distributed orthogonal matrix can be approximated by a random Gaussian matrix. Here, we consider a Gaussian random matrix (Formula presented.) of order n and apply to it the Gram–Schmidt orthonormalization procedure by columns to obtain a Haar-distributed orthogonal matrix (Formula presented.). If (Formula presented.) denotes the vector formed by the first m-coordinates of the ith row of (Formula presented.) and (Formula presented.), our main result shows that the Euclidean norm of (Formula presented.) converges exponentially fast to (Formula presented.), up to negligible terms. To show the extent of this result, we use it to study the convergence of the supremum norm (Formula presented.) and we find a coupling that improves by a factor (Formula presented.) the recently proved best known upper bound on (Formula presented.). Our main result also has applications in Quantum Information Theory.
Resumo:
This paper demonstrates a connection between data envelopment analysis (DEA) and a non-interactive elicitation method to estimate the weights of objectives for decision-makers in a multiple attribute approach. This connection gives rise to a modified DEA model that allows us to estimate not only efficiency measures but also preference weights by radially projecting each unit onto a linear combination of the elements of the payoff matrix (which is obtained by standard multicriteria methods). For users of multiple attribute decision analysis the basic contribution of this paper is a new interpretation in terms of efficiency of the non-interactive methodology employed to estimate weights in a multicriteria approach. We also propose a modified procedure to calculate an efficient payoff matrix and a procedure to estimate weights through a radial projection rather than a distance minimization. For DEA users, we provide a modified DEA procedure to calculate preference weights and efficiency measures that does not depend on any observations in the dataset. This methodology has been applied to an agricultural case study in Spain.
Resumo:
The Hybrid Monte Carlo algorithm is adapted to the simulation of a system of classical degrees of freedom coupled to non self-interacting lattices fermions. The diagonalization of the Hamiltonian matrix is avoided by introducing a path-integral formulation of the problem, in d + 1 Euclidean space–time. A perfect action formulation allows to work on the continuum Euclidean time, without need for a Trotter–Suzuki extrapolation. To demonstrate the feasibility of the method we study the Double Exchange Model in three dimensions. The complexity of the algorithm grows only as the system volume, allowing to simulate in lattices as large as 163 on a personal computer. We conclude that the second order paramagnetic–ferromagnetic phase transition of Double Exchange Materials close to half-filling belongs to the Universality Class of the three-dimensional classical Heisenberg model.