5 resultados para Error Correction Models
em Universidade Complutense de Madrid
Resumo:
Topological quantum error correction codes are currently among the most promising candidates for efficiently dealing with the decoherence effects inherently present in quantum devices. Numerically, their theoretical error threshold can be calculated by mapping the underlying quantum problem to a related classical statistical-mechanical spin system with quenched disorder. Here, we present results for the general fault-tolerant regime, where we consider both qubit and measurement errors. However, unlike in previous studies, here we vary the strength of the different error sources independently. Our results highlight peculiar differences between toric and color codes. This study complements previous results published in New J. Phys. 13, 083006 (2011).
Resumo:
Performing experiments on small-scale quantum computers is certainly a challenging endeavor. Many parameters need to be optimized to achieve high-fidelity operations. This can be done efficiently for operations acting on single qubits, as errors can be fully characterized. For multiqubit operations, though, this is no longer the case, as in the most general case, analyzing the effect of the operation on the system requires a full state tomography for which resources scale exponentially with the system size. Furthermore, in recent experiments, additional electronic levels beyond the two-level system encoding the qubit have been used to enhance the capabilities of quantum-information processors, which additionally increases the number of parameters that need to be controlled. For the optimization of the experimental system for a given task (e.g., a quantum algorithm), one has to find a satisfactory error model and also efficient observables to estimate the parameters of the model. In this manuscript, we demonstrate a method to optimize the encoding procedure for a small quantum error correction code in the presence of unknown but constant phase shifts. The method, which we implement here on a small-scale linear ion-trap quantum computer, is readily applicable to other AMO platforms for quantum-information processing.
Resumo:
In the Monte Carlo simulation of both lattice field theories and of models of statistical mechanics, identities verified by exact mean values, such as Schwinger-Dyson equations, Guerra relations, Callen identities, etc., provide well-known and sensitive tests of thermalization bias as well as checks of pseudo-random-number generators. We point out that they can be further exploited as control variates to reduce statistical errors. The strategy is general, very simple, and almost costless in CPU time. The method is demonstrated in the twodimensional Ising model at criticality, where the CPU gain factor lies between 2 and 4.
Resumo:
The fact that fast oscillating homogeneous scalar fields behave as perfect fluids in average and their intrinsic isotropy have made these models very fruitful in cosmology. In this work we will analyse the perturbations dynamics in these theories assuming general power law potentials V(ϕ) = λ|ϕ|^n /n. At leading order in the wavenumber expansion, a simple expression for the effective sound speed of perturbations is obtained c_eff^ 2 = ω = (n − 2)/(n + 2) with ω the effective equation of state. We also obtain the first order correction in k^ 2/ω_eff^ 2 , when the wavenumber k of the perturbations is much smaller than the background oscillation frequency, ω_eff. For the standard massive case we have also analysed general anharmonic contributions to the effective sound speed. These results are reached through a perturbed version of the generalized virial theorem and also studying the exact system both in the super-Hubble limit, deriving the natural ansatz for δϕ; and for sub-Hubble modes, exploiting Floquet’s theorem.
Resumo:
We recently published an article (García-Pérez & Alcalá- Quintana, 2010) reanalyzing data presented by Lapid, Ulrich, and Rammsayer (2008) and discussing a theoretical argument developed by Ulrich and Vorberg (2009). The purpose of this note is to correct an error in our study that has some theoretical importance, although it does not affect the conclusion that was raised. The error lies in that asymptote parameters reflecting lapses or finger errors should not enter the constraint relating the psychometric functions that describe performance when the comparison stimulus in a two-alternative forced choice (2AFC) discrimination task is presented in the first or second interval.