4 resultados para Epidemiology of ageing

em Universidade Complutense de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND African swine fever (ASF) is one of the most complex viral diseases affecting both domestic and wild pigs. It is caused by ASF virus (ASFV), the only DNA virus which can be efficiently transmitted by an arthropod vector, soft ticks of the genus Ornithodoros. These ticks can be part of ASFV-transmission cycles, and in Europe, O. erraticus was shown to be responsible for long-term maintenance of ASFV in Spain and Portugal. In 2014, the disease has been reintroduced into the European Union, affecting domestic pigs and, importantly, also the Eurasian wild boar population. In a first attempt to assess the risk of a tick-wild boar transmission cycle in Central Europe that would further complicate eradication of the disease, over 700 pre-existing serum samples from wild boar hunted in four representative German Federal States were investigated for the presence of antibodies directed against salivary antigen of Ornithodoros erraticus ticks using an indirect ELISA format. RESULTS Out of these samples, 16 reacted with moderate to high optical densities that could be indicative of tick bites in sampled wild boar. However, these samples did not show a spatial clustering (they were collected from distant geographical regions) and were of bad quality (hemolysis/impurities). Furthermore, all positive samples came from areas with suboptimal climate for soft ticks. For this reason, false positive reactions are likely. CONCLUSION In conclusion, the study did not provide stringent evidence for soft tick-wild boar contact in the investigated German Federal States and thus, a relevant involvement in the epidemiology of ASF in German wild boar is unlikely. This fact would facilitate the eradication of ASF in the area, although other complex relations (wild boar biology and interactions with domestic pigs) need to be considered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wild boar is a recognized reservoir of bovine tuberculosis (TB) in the Mediterranean ecosystems, but information is scarce outside of hotspots in southern Spain. We describe the first high-prevalence focus of TB in a non-managed wild boar population in northern Spain and the result of eight years of TB management. Measures implemented for disease control included the control of the local wild boar population through culling and stamping out of a sympatric infected cattle herd. Post-mortem inspection for detection of tuberculosis-like lesions as well as cultures from selected head and cervical lymph nodes was done in 745 wild boar, 355 Iberian ibexes and five cattle between 2004 and 2012. The seasonal prevalence of TB reached 70% amongst adult wild boar and ten different spoligotypes and 13 MIRU-VNTR profiles were detected, although more than half of the isolates were included in the same clonal complex. Only 11% of infected boars had generalized lesions. None of the ibexes were affected, supporting their irrelevance in the epidemiology of TB. An infected cattle herd grazed the zone where 168 of the 197 infected boars were harvested. Cattle removal and wild boar culling together contributed to a decrease in TB prevalence. The need for holistic, sustained over time, intensive and adapted TB control strategies taking into account the multi-host nature of the disease is highlighted. The potential risk for tuberculosis emergence in wildlife scenarios where the risk is assumed to be low should be addressed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Because of their relative simplicity and the barriers to gene flow, islands are ideal systems to study the distribution of biodiversity. However, the knowledge that can be extracted from this peculiar ecosystem regarding epidemiology of economically relevant diseases has not been widely addressed. We used information available in the scientific literature for 10 old world islands or archipelagos and original data on Sicily to gain new insights into the epidemiology of the Mycobacterium tuberculosis complex (MTC). We explored three nonexclusive working hypotheses on the processes modulating bovine tuberculosis (bTB) herd prevalence in cattle and MTC strain diversity: insularity, hosts and trade. Results suggest that bTB herd prevalence was positively correlated with island size, the presence of wild hosts, and the number of imported cattle, but neither with isolation nor with cattle density. MTC strain diversity was positively related with cattle bTB prevalence, presence of wild hosts and the number of imported cattle, but not with island size, isolation, and cattle density. The three most common spoligotype patterns coincided between Sicily and mainland Italy. However in Sicily, these common patterns showed a clearer dominance than on the Italian mainland, and seven of 19 patterns (37%) found in Sicily had not been reported from continental Italy. Strain patterns were not spatially clustered in Sicily. We were able to infer several aspects of MTC epidemiology and control in islands and thus in fragmented host and pathogen populations. Our results point out the relevance of the intensity of the cattle commercial networks in the epidemiology of MTC, and suggest that eradication will prove more difficult with increasing size of the island and its environmental complexity, mainly in terms of the diversity of suitable domestic and wild MTC hosts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND Mycobacterium avium subspecies paratuberculosis (Map) causes an infectious chronic enteritis (paratuberculosis or Johne's disease) principally of ruminants. The epidemiology of Map is poorly understood, particularly with respect to the role of wildlife reservoirs and the controversial issue of zoonotic potential (Crohn's disease). Genotypic discrimination of Map isolates is pivotal to descriptive epidemiology and resolving these issues. This study was undertaken to determine the genetic diversity of Map, enhance our understanding of the host range and distribution and assess the potential for interspecies transmission. RESULTS 164 Map isolates from seven European countries representing 19 different host species were genotyped by standardized IS900--restriction fragment length polymorphism (IS900-RFLP), pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphisms (AFLP) and mycobacterial interspersed repeat unit-variable number tandem repeat (MIRU-VNTR) analyses. Six PstI and 17 BstEII IS900-RFLP, 31 multiplex [SnaBI-SpeI] PFGE profiles and 23 MIRU-VNTR profiles were detected. AFLP gave insufficient discrimination of isolates for meaningful genetic analysis. Point estimates for Simpson's index of diversity calculated for the individual typing techniques were in the range of 0.636 to 0.664 but a combination of all three methods increased the discriminating power to 0.879, sufficient for investigating transmission dynamics. Two predominant strain types were detected across Europe with all three typing techniques. Evidence for interspecies transmission between wildlife and domestic ruminants on the same property was demonstrated in four cases, between wildlife species on the same property in two cases and between different species of domestic livestock on one property. CONCLUSION The results of this study showed that it is necessary to use multiple genotyping techniques targeting different sources of genetic variation to obtain the level of discrimination necessary to investigate transmission dynamics and trace the source of Map infections. Furthermore, the combination of genotyping techniques may depend on the geographical location of the population to be tested. Identical genotypes were obtained from Map isolated from different host species co-habiting on the same property strongly suggesting that interspecies transmission occurs. Interspecies transmission of Map between wildlife species and domestic livestock on the same property provides further evidence to support a role for wildlife reservoirs of infection.