2 resultados para Enseñanza de matemática para no matemáticos

em Universidade Complutense de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

El objetivo general de esta investigación es estudiar el desarrollo de los conocimientos informales sobre la agrupación de base 10 y los conocimientos del valor posicional, a través del estudio de las estrategias utilizadas por los niños en la resolución de problemas aritméticos verbales, así como el análisis de las representaciones de cantidades discretas utilizadas en sus procedimientos, describiendo además, la evolución de las estrategias y representaciones a lo largo de un curso. En la investigación, han participado 54 alumnos de primer curso de educación primaria de un centro público de la zona noroeste de Madrid. Se ha diseñado un taller de resolución de problemas compuesto por 25 sesiones, una por semana, desarrollado a lo largo de un curso escolar. En el taller se han planteado problemas de estructura multiplicativa, de grupos iguales, con agrupamientos de 10, de multiplicación y división; otros de grupos iguales, sin grupos de diez; y problemas de estructura aditiva con números de dos cifras. Los problemas estaban basados en cuentos leídos en el aula. A los alumnos se les ofrecían diversos materiales manipulativos (estructurados y no estructurados), sin instrucción sobre su uso, entre los cuales podían elegir libremente. En los talleres había una fase de trabajo individual, seguida de una puesta en común, y la escritura de una carta con la explicación de proceso de resolución del problema. La recogida de datos se realiza a través de entrevistas individuales, realizadas dentro del aula, grabadas en video o anotadas en hojas de registro. Se han tomado fotografías del proceso de resolución cuando los alumnos utilizaban materiales manipulativos. Finalmente, se han recogido las hojas de trabajo de los alumnos y las cartas escritas. Para analizar las estrategias, se parte de una categorización proveniente de estudios previos. Las estrategias de modelización directa han sido analizadas prestando especial atención a la representación de las cantidades y su conteo. Esta circunstancia, unida a la libertad que se ha dado en la selección y uso de materiales, ha dado lugar a la detección de gran diversidad de modalidades de aplicación de las estrategias no descritas en estudios previos. Algunas de ellas son estrategias de transición de modelización directa a estrategias de conteo y a otras que suponen el uso de hechos numéricos, facilitadas por el uso del rekenrek y la Tabla 100. Otras muestran, con más detalle que los estudios previos, la evolución de las estrategias de modelización directa, desde la ausencia de representación de las cantidades en grupos de 10, a la representación de las cantidades separadas en decenas y unidades con ayuda de materiales no estructurados como los cartones de decenas de huevos y barras de 10 formadas con cubos encajables. Todo esto ha permitido describir la evolución, desde las estrategias informales de modelización a estrategias formales, así como el desarrollo de la comprensión de la decena, para el que se describen transiciones entre niveles de comprensión señalados en estudios previos...

Relevância:

40.00% 40.00%

Publicador:

Resumo:

“Las Escuelas deben de reconocer y satisfacer las necesidades de sus alumnos, adaptándose a los varios estilos y ritmos de aprendizaje, con el fin de garantizar un buen nivel en la educación, para todos a través de curricula adecuados, de una buena organización escolar, de estrategias pedagógicas, de utilización de recursos y de una cooperación con las respectivas comunidades. Son precisos, por tanto, un conjunto de apoyos y de servcios para satisfacer ese conjunto de necesidades especiales dentrto de la Escuela”, “con todo ello y aunque, sin embargo, los compromisos internacionales, asumidos por los políticos, sean muy importantes, éstos no desencadenan, por sí solos, prácticas diferentes en las comunidades a las que van dirigidos” y, como comprueban diversos estudios, la formación inicial de los profesores no ha desarrollado en los docentes la práctica de estrategias inclusivas. La investigación presente pretende elaborar algunos puntos de convergencia entre la orientación der las políticas educativas mundiales, la investigación realizada en ese ámbito y las prácticas lectivas actuales, dado que “Los profesionales de la educación se enfrentan en la práctica con innumerables problemas. En vez de aguardar soluciones venidas del exterior, muchos de ellos procuran investigarlos directamente”. Afirmamos que es posible enseñar en las circunstancias más difíciles, si utilizamos los medios y los recursos necesarios, y para ello es imprescindible la creatividad, trabajo, y conocer los medios, para que la enseñanza sea realmente eficaz. El presente trabajo de investigación, tiene como motivos principales diseñar, aplicar y evaluar estrategias inclusivas que permitan transmitir el conocimiento algebraico a todos los alumnos de una sección de enseñanza regular, que incluye a los alumnos invidentes, de tal modo que puedan responder a la cuestión: ¿Qué estrategias de enseñanza y qué recursos educativos será necesario diseñar y aplicar para que estos alumnos logren adquirir el conocimiento algebraico en el 3er, Ciclo de la Enseñanza Básica en Portugal, de modo semejante a como lo hacen los restantes del grupo? Para ello se ha procurado, a través del paradigma de investigación interpretativa, descriptiva y cualitativa, según una metodología de investigación-acción, basándose en un estudio de caso: a) conocer las características, limitaciones y las dificultades consecuentes de la grafía Matemática Braille (GMB), las cuales, aunque puedan no estar directamente relacionadas con el estudio en cuestión, subyacen bajo él; b) identificar las dificultdes mayores que tienen los alumnos invidentes en el aprendizaje del Álgebra, partir de esto mismo. c) diseñar estrategias de organización y gestión del aula para la inclusión de alumnos invidentes en actividades algebraicas, utiizando los recursos pedagógicos existentes en el contexto del presente estudio; así como: d) Evaluar el impacto de la aplicación de un amplio campo de actividades de carácter exploratorio, que posibiliten a dichos alumnos desarrollar su propio raciocinio matemático, especialmente en el ámbito del álgebra y así evolucionar en su proceso de enseñanza-aprendizaje...