4 resultados para Elliptic Integrals
em Universidade Complutense de Madrid
Resumo:
Los dominios finos, es decir, dominios sustancialmente más pequeños en alguna o varias de sus direcciones que en el resto, aparecen en muchos campos de la ciencia. Por ejemplo, dinámica de fluídos (lubricación, conducción de fluídos en tubos delgados, dinámica de oceanos...), mecánica de sólidos (barras delgadas, placas o cáscaras) o incluso en fisiología (circulación de la sangre). Así, el amplio número de posibles aplicaciones a situaciones reales ha hecho que la investigación de modelos de ecuaciones en derivadas parciales en dominios finos se convierta en un tema muy estudiado en los últimos años. Desde un punto de vista matemático, el estudio de las soluciones de una EDP en un dominio fino es un caso particular de la cuestión general relativa a cómo la variación de los dominios afecta al comportamiento de las soluciones de la EDP. En este marco, obtener la ecuación límite del modelo considerado, comparar la solución de la ecuación límite y las soluciones del problema en el dominio fino, analizar los coeficientes de la ecuación límite y comprender cómo la geometría del dominio afecta a la ecuación límite son algunos de los objetivos que deberían ser alcanzados. De hecho, es importante señalar que este tipo de cuestiones no sólo proporcionan importantes resultados teóricos sino que son muy relevantes desde el punto de vista de las aplicaciones. Por ejemplo, ser capaz de reducir el problema original a un problema mucho más sencillo, problema límite, que refleje las principales características del problema de partida puede ser muy útil para ingenieros y físicos...
Resumo:
A classical study about Klein and Riemann surfaces consists in determining their groups of automorphisms. This problem is very difficult in general,and it has been solved for particular families of surfaces or for fixed topological types. In this paper, we calculate the automorphism groups of non-orientable bordered elliptic-hyperelliptic Klein surfaces of algebraic genus p> 5.
Resumo:
Tumor induced angiogenesis processes including the effect of stochastic motion and branching of blood vessels can be described coupling a (nonlocal in time) integrodifferential kinetic equation of Fokker–Planck type with a diffusion equation for the tumor induced ingiogenic factor. The chemotactic force field depends on the flux of blood vessels through the angiogenic factor. We develop an existence and uniqueness theory for this system under natural assumptions on the initial data. The proof combines the construction of fundamental solutions for associated linearized problems with comparison principles, sharp estimates of the velocity integrals and compactness results for this type of kinetic and parabolic operators
Resumo:
We introduce a general class of su(1|1) supersymmetric spin chains with long-range interactions which includes as particular cases the su(1|1) Inozemtsev (elliptic) and Haldane-Shastry chains, as well as the XX model. We show that this class of models can be fermionized with the help of the algebraic properties of the su(1|1) permutation operator and take advantage of this fact to analyze their quantum criticality when a chemical potential term is present in the Hamiltonian. We first study the low-energy excitations and the low-temperature behavior of the free energy, which coincides with that of a (1+1)-dimensional conformal field theory (CFT) with central charge c=1 when the chemical potential lies in the critical interval (0,E(π)), E(p) being the dispersion relation. We also analyze the von Neumann and Rényi ground state entanglement entropies, showing that they exhibit the logarithmic scaling with the size of the block of spins characteristic of a one-boson (1+1)-dimensional CFT. Our results thus show that the models under study are quantum critical when the chemical potential belongs to the critical interval, with central charge c=1. From the analysis of the fermion density at zero temperature, we also conclude that there is a quantum phase transition at both ends of the critical interval. This is further confirmed by the behavior of the fermion density at finite temperature, which is studied analytically (at low temperature), as well as numerically for the su(1|1) elliptic chain.