2 resultados para Electron transport properties
em Universidade Complutense de Madrid
Resumo:
We numerically investigate the effects of inhomogeneities in the energy spectrum of aperiodic semiconductor superlattices, focusing our attention on Thue-Morse and Fibonacci sequences. In the absence of disorder, the corresponding electronic spectra are self-similar. The presence of a certain degree of randomness, due to imperfections occurring during the growth processes, gives rise to a progressive loss of quantum coherence, smearing out the finer details of the energy spectra predicted for perfect aperiodic superlattices and spurring the onset of electron localization. However, depending on the degree of disorder introduced, a critical size for the system exists, below which peculiar transport properties, related to the pre-fractal nature of the energy spectrum, may be measured.
Resumo:
We consider the electron dynamics and transport properties of one-dimensional continuous models with random, short-range correlated impurities. We develop a generalized Poincare map formalism to cast the Schrodinger equation for any potential into a discrete set of equations, illustrating its application by means of a specific example. We then concentrate on the case of a Kronig-Penney model with dimer impurities. The previous technique allows us to show that this model presents infinitely many resonances (zeroes of the reflection coefficient at a single dimer) that give rise to a band of extended states, in contradiction with the general viewpoint that all one-dimensional models with random potentials support only localized states. We report on exact transfer-matrix numerical calculations of the transmission coefFicient, density of states, and localization length for various strengths of disorder. The most important conclusion so obtained is that this kind of system has a very large number of extended states. Multifractal analysis of very long systems clearly demonstrates the extended character of such states in the thermodynamic limit. In closing, we brieBy discuss the relevance of these results in several physical contexts.