8 resultados para Electromagnetismo.

em Universidade Complutense de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seebeck nanoantennas, which are based on the thermoelectric effect, have been proposed for electromagnetic energy harvesting and infrared detection. The responsivity and frequency dependence of three types of Seebeck nanoantennas is obtained by electromagnetic simulation for different materials. Results show that the square spiral antenna has the widest bandwidth and the highest induced current of the three analyzed geometries. However, the geometry that presented the highest temperature gradient was the bowtie antenna, which favors the thermoelectric effect in a Seebeck nanoantenna. The results also show that these types of devices can present a voltage responsivity as high as 36  μV/W36  μV/W for titanium–nickel dipoles resonant at far-infrared wavelengths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Finite-Differences Time-Domain (FDTD) algorithms are well established tools of computational electromagnetism. Because of their practical implementation as computer codes, they are affected by many numerical artefact and noise. In order to obtain better results we propose using Principal Component Analysis (PCA) based on multivariate statistical techniques. The PCA has been successfully used for the analysis of noise and spatial temporal structure in a sequence of images. It allows a straightforward discrimination between the numerical noise and the actual electromagnetic variables, and the quantitative estimation of their respective contributions. Besides, The GDTD results can be filtered to clean the effect of the noise. In this contribution we will show how the method can be applied to several FDTD simulations: the propagation of a pulse in vacuum, the analysis of two-dimensional photonic crystals. In this last case, PCA has revealed hidden electromagnetic structures related to actual modes of the photonic crystal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study theoretically the effect of a new type of blocklike positional disorder on the effective electromagnetic properties of one-dimensional chains of resonant, high-permittivity dielectric particles, where particles are arranged into perfectly well-ordered blocks whose relative position is a random variable. This creates a finite order correlation length that mimics the situation encountered in metamaterials fabricated through self-assembled techniques, whose structures often display short-range order between near neighbors but long-range disorder, due to stacking defects. Using a spectral theory approach combined with a principal component statistical analysis, we study, in the long-wavelength regime, the evolution of the electromagnetic response when the composite filling fraction and the block size are changed. Modifications in key features of the resonant response (amplitude, width, etc.) are investigated, showing a regime transition for a filling fraction around 50%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental setup to measure the three-dimensional phase-intensity distribution of an infrared laser beam in the focal region has been presented. It is based on the knife-edge method to perform a tomographic reconstruction and on a transport of intensity equation-based numerical method to obtain the propagating wavefront. This experimental approach allows us to characterize a focalized laser beam when the use of image or interferometer arrangements is not possible. Thus, we have recovered intensity and phase of an aberrated beam dominated by astigmatism. The phase evolution is fully consistent with that of the beam intensity along the optical axis. Moreover, this method is based on an expansion on both the irradiance and the phase information in a series of Zernike polynomials. We have described guidelines to choose a proper set of these polynomials depending on the experimental conditions and showed that, by abiding these criteria, numerical errors can be reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently thermo-electrical nanoantennas, also known as Seebeck nanoantennas, have been proposed as an alternative for solar energy harvesting applications. In this work we present the optical and thermal analysis of metallic nanoantennas operating at infrared wavelengths, this study is performed by numerical simulations using COMSOL Multiphysics. Several different nanoantenna designs were analyzed including dipoles, bowties and square spiral antennas. Results show that metallic nanoantennas can be tuned to absorb electromagnetic energy at infrared wavelengths, and that numerical simulation can be useful in optimizing the performance of these types of nanoantennas at optical and infrared wavelengths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon samples were implanted with high Ti doses and subsequently processed with the pulsed-laser melting technique. The electronic transport properties in the 15–300 K range and the room temperature spectral photoresponse at energies over the bandgap were measured. Samples with Ti concentration below the insulator-metal (I-M) transition limit showed a progressive reduction of the carrier lifetime in the implanted layer as Ti dose is increased. However, when the Ti concentration exceeded this limit, an extraordinary recovery of the photoresponse was measured. This result supports the theory of intermediate band materials and is of utmost relevance for photovoltaic cells and Si-based detectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variable width pulse generator featuring more than 4-V peak amplitude and less than 10-ns FWHM is described. In this design the width of the pulses is controlled by means of the control signal slope. Thus, a variable transition time control circuit (TTCC) is also developed, based on the charge and discharge of a capacitor by means of two tunable current sources. Additionally, it is possible to activate/deactivate the pulses when required, therefore allowing the creation of any desired pulse pattern. Furthermore, the implementation presented here can be electronically controlled. In conclusion, due to its versatility, compactness and low cost it can be used in a wide variety of applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EChO (Exoplanet atmospheres Characterization Observatory), a proposal for exoplanets exploration space mission, is considered the next step for planetary atmospheres characterization. It would be a dedicated observatory to uncover a large selected sample of planets spanning a wide range of masses (from gas giants to super-Earths) and orbital temperatures (from hot to habitable). All targets move around stars of spectral types F, G, K, and M. EChO would provide an unprecedented view of the atmospheres of planets in the solar neighbourhood. The consortium formed by various institutions of different countries proposed as ESA M3 an integrated spectrometer payload for EChO covering the wavelength interval 0.4 to 16 µm. This instrument is subdivided into 4 channels: a visible channel, which includes a fine guidance system (FGS) and a VIS spectrometer, a near infrared channel (SWiR), a middle infrared channel (MWiR), and a long wave infrared module (LWiR). In addition, it contains a common set of optics spectrally dividing the wavelength coverage and injecting the combined light of parent stars and their exoplanets into the different channels. The proposed payload meets all of the key performance requirements detailed in the ESA call for proposals as well as all scientific goals. EChO payload is based on different spectrometers covering the spectral range mentioned above. Among them, SWiR spectrometer would work from 2.45 microns to 5.45 microns. In this paper, the optical and mechanical designs of the SWiR channel instrument are reported on.