2 resultados para Distributed embedded systems

em Universidade Complutense de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

New generation embedded systems demand high performance, efficiency and flexibility. Reconfigurable hardware can provide all these features. However the costly reconfiguration process and the lack of management support have prevented a broader use of these resources. To solve these issues we have developed a scheduler that deals with task-graphs at run-time, steering its execution in the reconfigurable resources while carrying out both prefetch and replacement techniques that cooperate to hide most of the reconfiguration delays. In our scheduling environment task-graphs are analyzed at design-time to extract useful information. This information is used at run-time to obtain near-optimal schedules, escaping from local-optimum decisions, while only carrying out simple computations. Moreover, we have developed a hardware implementation of the scheduler that applies all the optimization techniques while introducing a delay of only a few clock cycles. In the experiments our scheduler clearly outperforms conventional run-time schedulers based on As-Soon-As-Possible techniques. In addition, our replacement policy, specially designed for reconfigurable systems, achieves almost optimal results both regarding reuse and performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reconfigurable hardware can be used to build multi tasking systems that dynamically adapt themselves to the requirements of the running applications. This is especially useful in embedded systems, since the available resources are very limited and the reconfigurable hardware can be reused for different applications. In these systems computations are frequently represented as task graphs that are executed taking into account their internal dependencies and the task schedule. The management of the task graph execution is critical for the system performance. In this regard, we have developed two dif erent versions, a software module and a hardware architecture, of a generic task-graph execution manager for reconfigurable multi-tasking systems. The second version reduces the run-time management overheads by almost two orders of magnitude. Hence it is especially suitable for systems with exigent timing constraints. Both versions include specific support to optimize the reconfiguration process.